Non-invertible Gauss Law and Axions

In axion-Maxwell theory at the minimal axion-photon coupling, we find non-invertible 0and 1-form global symmetries arising from the naive shift and center symmetries. Since the Gauss law is anomalous, there is no conserved, gauge-invariant, and quantized electric charge. Rather, using half higher gauging, we find a non-invertible Gauss law associated with a noninvertible 1-form global symmetry, which is related to the Page charge. These symmetries act invertibly on the axion field and Wilson line, but non-invertibly on the monopoles and axion strings, leading to selection rules related to the Witten effect. We also derive various crossing relations between the defects. Finally, we show that the non-invertible 0and 1-form global symmetries mix with other invertible symmetries in a way reminiscent of a higher-group symmetry. Using this non-invertible higher symmetry structure, we derive universal inequalities on the energy scales where different infrared symmetries emerge in any renormalization group flow to the axion-Maxwell theory. ar X iv :2 21 2. 04 49 9v 1 [ he pth ] 8 D ec 2 02 2

[1]  Ling Lin,et al.  Decomposition, Condensation Defects, and Fusion , 2022, Fortschritte der Physik.

[2]  K. Intriligator,et al.  Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond , 2022, 2205.09545.

[3]  Ho Tat Lam,et al.  Noninvertible Global Symmetries in the Standard Model. , 2022, Physical review letters.

[4]  Y. Hayashi,et al.  Non-invertible self-duality defects of Cardy-Rabinovici model and mixed gravitational anomaly , 2022, Journal of High Energy Physics.

[5]  Ho Tat Lam,et al.  Global dipole symmetry, compact Lifshitz theory, tensor gauge theory, and fractons , 2022, Physical Review B.

[6]  I. M. Burbano,et al.  Duality defects in E8 , 2021, Journal of High Energy Physics.

[7]  Yunqin Zheng,et al.  Kramers-Wannier-like Duality Defects in (3+1)D Gauge Theories. , 2021, Physical review letters.

[8]  F. Verstraete,et al.  Critical Lattice Model for a Haagerup Conformal Field Theory. , 2021, Physical review letters.

[9]  Tzu-Chen Huang,et al.  Numerical Evidence for a Haagerup Conformal Field Theory. , 2021, Physical review letters.

[10]  Z. Komargodski,et al.  Higher central charges and topological boundaries in 2+1-dimensional TQFTs , 2021, SciPost Physics.

[11]  T. D. Brennan,et al.  Axions, higher-groups, and emergent symmetry , 2020, Journal of High Energy Physics.

[12]  Yunqin Zheng,et al.  Non-invertible symmetries of N = 4 SYM and twisted compactification , 2022 .

[13]  Tzu-Chen Huang,et al.  Construction of two-dimensional topological field theories with non-invertible symmetries , 2021, Journal of High Energy Physics.

[14]  Tom Rudelius,et al.  The Weak Gravity Conjecture and axion strings , 2021, Journal of High Energy Physics.

[15]  John Stout,et al.  Axion Mass from Magnetic Monopole Loops. , 2021, Physical review letters.

[16]  Tom Rudelius,et al.  Non-invertible global symmetries and completeness of the spectrum , 2021, Journal of High Energy Physics.

[17]  Y. Tanizaki,et al.  Noninvertible 1-form symmetry and Casimir scaling in 2D Yang-Mills theory , 2021, Physical Review D.

[18]  Y. Tanizaki,et al.  Semi-Abelian gauge theories, non-invertible symmetries, and string tensions beyond N-ality , 2021, 2101.02227.

[19]  Ying-Hsuan Lin,et al.  Lorentzian dynamics and factorization beyond rationality , 2020, Journal of High Energy Physics.

[20]  Tom Rudelius,et al.  Chern-Weil global symmetries and how quantum gravity avoids them , 2020, Journal of High Energy Physics.

[21]  Y. Hidaka,et al.  Global 3-group symmetry and ’t Hooft anomalies in axion electrodynamics , 2020, Journal of High Energy Physics.

[22]  Z. Komargodski,et al.  Symmetries and strings of adjoint QCD2 , 2020, Journal of High Energy Physics.

[23]  D. Gaiotto,et al.  Orbifold groupoids , 2020, Journal of High Energy Physics.

[24]  Ying-Hsuan Lin,et al.  Duality defect of the monster CFT , 2019, Journal of Physics A: Mathematical and Theoretical.

[25]  H. Ooguri,et al.  Symmetries in Quantum Field Theory and Quantum Gravity , 2018, Communications in Mathematical Physics.

[26]  Lu Zhang,et al.  Anomalies , 2005, Introduction to the Standard Model and Beyond.

[27]  E. Massó Axions , 2003, New Era for CP Asymmetries.

[28]  S. Yamaguchi,et al.  Non-invertible topological defects in 4-dimensional Z 2 pure lattice gauge theory , 2021 .

[29]  E. Shuryak Monopoles , 2021, Nonperturbative Topological Phenomena in QCD and Related Theories.

[30]  Kazuya Yonekura,et al.  Witten effect, anomaly inflow, and charge teleportation , 2020, 2010.02221.

[31]  R. Mong,et al.  Topological Defects on the Lattice: Dualities and Degeneracies , 2020, 2008.08598.

[32]  Y. Hidaka,et al.  Higher-form symmetries and 3-group in axion electrodynamics , 2020, 2006.12532.

[33]  Tom Rudelius,et al.  Topological operators and completeness of spectrum in discrete gauge theories , 2020, Journal of High Energy Physics.

[34]  X. Wen,et al.  Topological transition on the conformal manifold , 2019, 1909.01425.

[35]  Ho Tat Lam,et al.  Anomalies in the space of coupling constants and their dynamical applications II , 2019, SciPost Physics.

[36]  Yuji Tachikawa On gauging finite subgroups , 2017, SciPost Physics.

[37]  Yifan Wang,et al.  Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases , 2019, 1912.02817.

[38]  Ho Tat Lam,et al.  Comments on one-form global symmetries and their gauging in 3d and 4d , 2018, SciPost Physics.

[39]  Clay Córdova,et al.  On 2-group global symmetries and their anomalies , 2018, Journal of High Energy Physics.

[40]  Y. Wang,et al.  Topological defect lines and renormalization group flows in two dimensions , 2018, Journal of High Energy Physics.

[41]  K. Intriligator,et al.  Exploring 2-group global symmetries , 2018, Journal of High Energy Physics.

[42]  Meng Cheng,et al.  Symmetry fractionalization, defects, and gauging of topological phases , 2014, Physical Review B.

[43]  Y. Kikuchi 't Hooft anomaly, global inconsistency, and some of their applications , 2018 .

[44]  Kazuya Yonekura,et al.  Anomalies of duality groups and extended conformal manifolds , 2018, Progress of Theoretical and Experimental Physics.

[45]  Yuji Tachikawa,et al.  On finite symmetries and their gauging in two dimensions , 2017, 1704.02330.

[46]  C. Nayak,et al.  Cheshire charge in (3+1)-dimensional topological phases , 2017, 1702.02148.

[47]  R. Mong,et al.  Topological defects on the lattice: I. The Ising model , 2016, 1601.07185.

[48]  I. Runkel,et al.  Orbifold completion of defect bicategories , 2012, 1210.6363.

[49]  Nathan Seiberg,et al.  Generalized global symmetries , 2014, 1412.5148.

[50]  A. Vishwanath,et al.  Anomalous Symmetry Fractionalization and Surface Topological Order , 2014, 1403.6491.

[51]  A. Kapustin,et al.  Coupling a QFT to a TQFT and duality , 2014, 1401.0740.

[52]  Liang Kong Anyon condensation and tensor categories , 2013, 1307.8244.

[53]  U. Whitcher Boundary Conditions , 2011 .

[54]  T. Banks,et al.  Symmetries and Strings in Field Theory and Gravity , 2010, 1011.5120.

[55]  J. Fuchs,et al.  DEFECT LINES, DUALITIES AND GENERALISED ORBIFOLDS , 2009, 0909.5013.

[56]  A. U.S D2-branes in B fields , 2008 .

[57]  M. Freedman,et al.  Interacting anyons in topological quantum liquids: the golden chain. , 2006, Physical review letters.

[58]  J. Fuchs,et al.  DUALITY AND DEFECTS IN RATIONAL CONFORMAL FIELD THEORY , 2006, hep-th/0607247.

[59]  L. Motl,et al.  The String landscape, black holes and gravity as the weakest force , 2006, hep-th/0601001.

[60]  J. Fröhlich,et al.  Kramers-wannier duality from conformal defects. , 2004, Physical review letters.

[61]  J. Polchinski Monopoles, Duality, and String Theory , 2003, hep-th/0304042.

[62]  John,et al.  Classical Physics as Geometry Gravitation, Electromagnetism, Unquantized Charge, and Mass as Properties of Curved Empty Space* , 2003 .

[63]  D. Freed,et al.  The M theory three form and E(8) gauge theory , 2003 .

[64]  J. Fuchs,et al.  TFT construction of RCFT correlators I: Partition functions , 2002, hep-th/0204148.

[65]  J. Maldacena,et al.  D-brane charges in five-brane backgrounds , 2001, hep-th/0108152.

[66]  J. Zuber,et al.  Generalised twisted partition functions , 2000, hep-th/0011021.

[67]  D. Marolf Chern-Simons terms and the Three Notions of Charge , 2000, hep-th/0006117.

[68]  C. Schweigert,et al.  Flux stabilization of D-branes , 2000, hep-th/0003037.

[69]  I. Kogan Axions, monopoles and cosmic strings , 1993 .

[70]  Cumrun Vafa,et al.  Quantum Symmetries of String Vacua , 1989 .

[71]  J. Cardy Boundary conditions, fusion rules and the Verlinde formula , 1989 .

[72]  T. Banks,et al.  Constraints on string vacua with spacetime supersymmetry , 1988 .

[73]  E. Verlinde,et al.  Fusion Rules and Modular Transformations in 2D Conformal Field Theory , 1988 .

[74]  S. Naculich Axionic strings: Covariant anomalies and bosonization of chiral zero modes , 1988 .

[75]  C. Callan,et al.  ANOMALIES AND FERMION ZERO MODES ON STRINGS AND DOMAIN WALLS , 1985 .

[76]  D. Page Classical stability of round and squashed seven-spheres in eleven-dimensional supergravity , 1983 .

[77]  J. Preskill,et al.  Dyon-axion dynamics , 1983 .

[78]  E. Witten Dyons of charge eθ/2π , 1979 .

[79]  A. Stechow,et al.  Decomposition , 1902, The Indian medical gazette.