Highly accurate boundary detection and grouping

In this work we address boundary detection and boundary grouping. We first pursue a learning-based approach to boundary detection. For this (i) we leverage appearance and context information by extracting descriptors around edgels and use them as features for classification, (ii) we use discriminative dimensionality reduction for efficiency and (iii) we use outlier-resilient boosting to deal with noise in the training set. We then introduce fractional-linear programming to optimize a grouping criterion that is expressed as a cost ratio. Our contributions are systematically evaluated on the Berkeley benchmark.

[1]  C. Bajaj Algebraic Geometry and its Applications , 1994 .

[2]  D. Mumford Elastica and Computer Vision , 1994 .

[3]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[4]  Ronen Basri,et al.  Completion energies and scale , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  R. Cook,et al.  Dimension Reduction in Binary Response Regression , 1999 .

[6]  Y. Freund,et al.  Discussion of the Paper \additive Logistic Regression: a Statistical View of Boosting" By , 2000 .

[7]  Osamu Watanabe,et al.  MadaBoost: A Modification of AdaBoost , 2000, COLT.

[8]  Ian H. Jermyn,et al.  Globally Optimal Regions and Boundaries as Minimum Ratio Weight Cycles , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Gunnar Rätsch,et al.  An Introduction to Boosting and Leveraging , 2002, Machine Learning Summer School.

[10]  Alan L. Yuille,et al.  Statistical Edge Detection: Learning and Evaluating Edge Cues , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Lance R. Williams,et al.  Segmentation of Multiple Salient Closed Contours from Real Images , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[14]  Jun Wang,et al.  Salient closed boundary extraction with ratio contour , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Jitendra Malik,et al.  Scale-invariant contour completion using conditional random fields , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[16]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[17]  David A. McAllester,et al.  A Min-Cover Approach for Finding Salient Curves , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[18]  Zhuowen Tu,et al.  Supervised Learning of Edges and Object Boundaries , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[19]  Aly A. Farag,et al.  CSIFT: A SIFT Descriptor with Color Invariant Characteristics , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[20]  Lattre de Tassigny Boundary Extraction in Natural Images Using Ultrametric Contour Maps , 2006 .

[21]  Gang Hua,et al.  Discriminant Embedding for Local Image Descriptors , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[22]  Jiri Matas,et al.  Improving Descriptors for Fast Tree Matching by Optimal Linear Projection , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[23]  Gang Song,et al.  Untangling Cycles for Contour Grouping , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[24]  Jitendra Malik,et al.  Using contours to detect and localize junctions in natural images , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Martial Hebert,et al.  Discriminative Sparse Image Models for Class-Specific Edge Detection and Image Interpretation , 2008, ECCV.

[26]  Kurt Keutzer,et al.  Efficient, high-quality image contour detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[27]  D. Cremers,et al.  The Elastic Ratio: Introducing Curvature into Ratio-based Globally Optimal Image Segmentation , 2009 .

[28]  Jitendra Malik,et al.  From contours to regions: An empirical evaluation , 2009, CVPR.

[29]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[30]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .