Denoising 3D Medical Images Using a Second Order Variational Model and Wavelet Shrinkage

The aim of this paper is to construct a model which decomposes a 3D image into two components: the first one containing the geometrical structure of the image, the second one containing the noise. The proposed method is based on a second order variational model and an undecimated wavelet thresholding operator. The numerical implementation is described, and some experiments for denoising a 3D MRI image are successfully performed. Future prospects are finally exposed.

[1]  Loïc Piffet Décomposition d’image par modèles variationnels : débruitage et extraction de texture , 2010 .

[2]  M. Bergounioux On Poincare-Wirtinger inequalities in spaces of functions of bounded variation , 2011 .

[3]  S. Mallat VI – Wavelet zoom , 1999 .

[4]  M. Bergounioux,et al.  A second order model for 3D-texture extraction , 2011 .

[5]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[6]  Y. Meyer Oscillating Patterns in Some Nonlinear Evolution Equations , 2006 .

[7]  A. Chambolle Practical, Unified, Motion and Missing Data Treatment in Degraded Video , 2004, Journal of Mathematical Imaging and Vision.

[8]  Richard Kronland-Martinet,et al.  A real-time algorithm for signal analysis with the help of the wavelet transform , 1989 .

[9]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[10]  Rachid Deriche,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004 .

[11]  Andy M. Yip,et al.  Recent Developments in Total Variation Image Restoration , 2004 .

[12]  Antonin Chambolle,et al.  Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.

[13]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[14]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[15]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[16]  Thomas Brox,et al.  On the Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs , 2004, SIAM J. Numer. Anal..

[17]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[18]  S. Mallat A wavelet tour of signal processing , 1998 .