Considering sensor characteristics during measurement- system design for structural system identification

This paper presents a method for measurement-system design through criteria related to model based structural identification. Using a multi-model approach and results from previous research carried out at EPFL, an improved algorithm is proposed. The algorithm accounts for various types of sensors having different accuracies and taking different kinds of measurements. The algorithm selects sensor types and locations that minimise the number of non-identified candidate models. The results show that the approach provides an alternative to selecting and placing sensors using engineering experience alone, and that a scientific approach based on sensor characteristics and modelling error is feasible. A single span composite bridge is used to illustrate the algorithm. It is shown that adding more than 9 sensors, from a possible set of 34, will not provide further useful information for structural identification.

[1]  Ian E. Smith,et al.  Finding the right model for bridge diagnosis , 1998, AI in Structural Engineering.

[2]  Michele Meo,et al.  On the optimal sensor placement techniques for a bridge structure , 2005 .

[3]  Burcu Akinci,et al.  Sensor Data Driven Proactive Management of Infrastructure Systems , 2006, EG-ICE.

[4]  Dan M. Frangopol,et al.  Structural Health Monitoring and Reliability Estimation: Long Span Truss Bridge Application With Environmental Monitoring Data , 2008 .

[5]  J. Beck,et al.  UPDATING MODELS AND THEIR UNCERTAINTIES. II: MODEL IDENTIFIABILITY. TECHNICAL NOTE , 1998 .

[6]  B. Domer,et al.  A study of two stochastic search methods for structural control , 2003 .

[7]  K. Hjelmstad,et al.  Parameter Estimation of Structures from Static Response. II: Numerical Simulation Studies , 1994 .

[8]  Masoud Sanayei,et al.  Multiresponse Parameter Estimation for Finite-Element Model Updating Using Nondestructive Test Data , 2007 .

[9]  Ian F. C. Smith,et al.  Configuration of measurement systems using Shannon's entropy function , 2005 .

[10]  Naresh K. Sinha,et al.  System identification - Theory for the user : Lennart Ljung , 1989, Autom..

[11]  Ian F. C. Smith,et al.  Fundamentals of Computer-Aided Engineering , 2003 .

[12]  Ian F. C. Smith,et al.  Optimal Sensor Placement for Damage Detection: Role of Global Search , 2007 .

[13]  Sung-Pil Chang,et al.  Experimental Investigation of System-Identification-Based Damage Assessment on Structures , 2002 .

[14]  Ian F. C. Smith,et al.  Measurement system design using damage scenarios , 2007 .

[15]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[16]  Andrzej S. Nowak,et al.  Prediction of the combination of failure modes for an arch bridge system , 2007 .

[17]  Antonino Morassi,et al.  Dynamic Testing for Structural Identification of a Bridge , 2008 .

[18]  Lennart Ljung,et al.  System identification (2nd ed.): theory for the user , 1999 .

[19]  Masoud Sanayei,et al.  Parameter Estimation of Structures from Static Strain Measurements. I: Formulation , 1996 .

[20]  Masoud Sanayei,et al.  Damage Localization and Finite-Element Model Updating Using Multiresponse NDT Data , 2006 .

[21]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[22]  Junjie Li,et al.  Virus coevolution partheno-genetic algorithms for optimal sensor placement , 2008, Adv. Eng. Informatics.

[23]  H. Lee,et al.  STATISTICAL DAMAGE ASSESSMENT OF FRAMED STRUCTURES FROM STATIC RESPONSES , 2000 .

[24]  Masoud Sanayei,et al.  STRUCTURAL MODEL UPDATING USING EXPERIMENTAL STATIC MEASUREMENTS , 1997 .

[25]  Tetsuo Tomiyama,et al.  Advanced Engineering Informatics , 2007, Adv. Eng. Informatics.

[26]  K. Hjelmstad,et al.  Parameter Estimation of Structures from Static Response. I. Computational Aspects , 1994 .