Dynamics underlying spontaneous human alpha oscillations: A data-driven approach

Although the cognitive and clinical correlates of spontaneous human alpha oscillations as recorded with electroencephalography (EEG) or magnetoencephalography (MEG) are well documented, the dynamics underlying these oscillations is still a matter of debate. This study proposes a data-driven method to reveal the dynamics of these oscillations. It demonstrates that spontaneous human alpha oscillations as recorded with MEG can be viewed as noise-perturbed damped harmonic oscillations. This provides evidence for the hypothesis that these oscillations reflect filtered noise and hence do not possess limit-cycle dynamics. To illustrate the use of the model, we apply it to two data-sets in which a decrease in alpha power can be observed across conditions. The associated differences in the estimated model parameters show that observed decreases in alpha power are associated with different kinds of changes in the dynamics. Thus, the model parameters are useful dynamical biomarkers for spontaneous human alpha oscillations.

[1]  Cornelis J. Stam,et al.  Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer's disease , 2006, NeuroImage.

[2]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[3]  Hanspeter Herzel,et al.  Quantification of Circadian Rhythms in Single Cells , 2009, PLoS Comput. Biol..

[4]  Klaus Lehnertz,et al.  Kernel-based regression of drift and diffusion coefficients of stochastic processes , 2009 .

[5]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[6]  Karl J. Friston,et al.  a K.E. Stephan, a R.B. Reilly, , 2007 .

[7]  G. L. Gebber,et al.  Human brain alpha rhythm: nonlinear oscillation or filtered noise? , 1999, Brain Research.

[8]  Gustavo Deco,et al.  Effective Reduced Diffusion-Models: A Data Driven Approach to the Analysis of Neuronal Dynamics , 2009, PLoS Comput. Biol..

[9]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[10]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[11]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.

[12]  Rodrigo Quian Quiroga,et al.  Nonlinear multivariate analysis of neurophysiological signals , 2005, Progress in Neurobiology.

[13]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[14]  Michel Le Van Quyen,et al.  Analysis of dynamic brain oscillations: methodological advances , 2007, Trends in Neurosciences.

[15]  Chris Chatfield,et al.  The Analysis of Time Series , 1990 .

[16]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction , 1981 .

[17]  Annraoi M. de Paor,et al.  A stochastic limit cycle oscillator model of the EEG , 2004, Biological Cybernetics.

[18]  F. H. Lopes da Silva,et al.  Alpha rhythms: noise, dynamics and models. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[19]  F. L. D. Silva,et al.  Basic mechanisms of cerebral rhythmic activities , 1990 .

[20]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[21]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[22]  Olivier D. Faugeras,et al.  Bifurcation Analysis of Jansen's Neural Mass Model , 2006, Neural Computation.

[23]  Antonio Mauricio Evaluating the entrainment of the alpha rhythm during stroboscopic flash stimulation by means of coherence analysis , 2005 .

[24]  Klaus Lehnertz,et al.  Stochastic qualifiers of epileptic brain dynamics. , 2007, Physical review letters.

[25]  Karl J. Friston,et al.  Population dynamics under the Laplace assumption , 2009, NeuroImage.

[26]  F. L. D. Silva,et al.  The cortical source of the alpha rhythm , 1977, Neuroscience Letters.

[27]  Joachim Peinke,et al.  Exploring the dynamics of balance data — movement variability in terms of drift and diffusion , 2009 .

[28]  Arjen van Ooyen,et al.  Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease , 2009, Proceedings of the National Academy of Sciences.

[29]  Tohru Yagi,et al.  Research of the characteristics of Alzheimer’s disease using EEG , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[30]  M. Folstein,et al.  Clinical diagnosis of Alzheimer's disease , 1984, Neurology.

[31]  A. van der Vaart,et al.  Unbiased estimation of Langevin dynamics from time series with application to hippocampal field potentials in vitro. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Claudio Babiloni,et al.  Individual analysis of EEG frequency and band power in mild Alzheimer's disease , 2004, Clinical Neurophysiology.

[33]  T Dierks,et al.  Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study , 2000, Clinical Neurophysiology.