A multiple projection approach for constrained system identification

This paper deals with the constrained system identification problem of linear discrete time dynamical systems. It is assumed that the parameters of the system are constrained due to physical limitations. Using a multiple projection approach, a minimum variance estimator and its associated recursive version are developed to estimate the constrained parameters of the system. The most important feature of the developed technique is that it gives estimates of the system parameters once the first set of measurements is received. Therefore, there is no need to wait till sufficient number of measurements are collected to start the algorithm. The simulation results of illustrative examples are presented to show the effectiveness of the proposed estimation scheme.

[1]  M. Pachter,et al.  Ballistic Trajectory Tracking Using Constrained Estimation , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[2]  Alfred O. Hero,et al.  Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.

[3]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[4]  J. P. Norton Recursive linear estimation of linearly constrained parameters , 1979 .

[5]  Dale E. Seborg,et al.  Constrained Parameter Estimation with Applications to Blending Operations , 1998 .

[6]  G. S. Christensen,et al.  New algorithm for optimal parameter estimation with linear constraints , 1990 .

[7]  A. Farina,et al.  Hard-constrained versus soft-constrained parameter estimation , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[8]  R. D. DeGroat,et al.  Exponential parameter estimation In the presence of known components and noise , 1994 .

[9]  Gérard Salut,et al.  Minimum variance estimation of parameters constrained by bounds , 2001, IEEE Trans. Signal Process..

[10]  Qinghua Zhang,et al.  An adaptive observer for sensor fault estimation in a class of uniformly observable non-linear systems , 2008, Int. J. Model. Identif. Control..

[11]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[12]  J.A. Keim,et al.  Spacecraft inertia estimation via constrained least squares , 2006, 2006 IEEE Aerospace Conference.

[13]  Keith J. Burnham,et al.  Simplified extended Kalman filter for automotive state estimation , 2008, Int. J. Model. Identif. Control..

[14]  Magdi S. Mahmoud,et al.  A two-level parameter estimation algorithm using the multiple projection approach , 1982, Autom..

[15]  Luigi Chisci,et al.  Estimation of Constrained Parameters With Guaranteed MSE Improvement , 2007, IEEE Transactions on Signal Processing.

[16]  Quanmin Zhu,et al.  An enhanced back propagation algorithm for parameter estimation of rational models , 2008, Int. J. Model. Identif. Control..

[17]  Magdi S. Mahmoud,et al.  Large-scale control systems : theories and techniques , 1985 .

[18]  Petre Stoica,et al.  On maximum-likelihood estimation of difference equation parameters , 1995, IEEE Trans. Signal Process..

[19]  Er-Wei Bai,et al.  Modelling and parameter estimation of a cell system , 2009, Int. J. Model. Identif. Control..

[20]  Yucai Zhu,et al.  System identification for process control: recent experience and outlook , 2009, Int. J. Model. Identif. Control..

[21]  Mortaza Jamshidian,et al.  On Algorithms for Restricted Maximum Likelihood Estimation , 2002, Comput. Stat. Data Anal..

[22]  Torsten Söderström,et al.  Improved estimation performance using known linear constraints , 2004, Autom..

[23]  Kathleen A. Kramer,et al.  System identification using the neural-extended Kalman filter for state-estimation and controller modification , 2008, IJCNN.

[24]  Er-Wei Bai,et al.  Optimization with few violated constraints for linear bounded error parameter estimation , 2002, IEEE Trans. Autom. Control..

[25]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[26]  H.J. Chizeck,et al.  Recursive parameter identification of constrained systems: an application to electrically stimulated muscle , 1991, IEEE Transactions on Biomedical Engineering.

[27]  Giansalvo Cirrincione,et al.  A new experimental application of least-squares techniques for the estimation of the induction motor parameters , 2002 .

[28]  James S. Meditch,et al.  Stochastic Optimal Linear Estimation and Control , 1969 .

[29]  Alan T. K. Wan,et al.  Minimum mean-squared error estimation in linear regression with an inequality constraint , 2000 .

[30]  M. Mobed,et al.  Estimation of constrained parameters in a linear model with multiplicative and additive noise , 1994, IEEE Trans. Inf. Theory.

[31]  Er-Wei Bai,et al.  Constrained logarithmic least squares in parameter estimation , 1999, IEEE Trans. Autom. Control..

[32]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[33]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[34]  Wojciech Chojnacki,et al.  A new constrained parameter estimator for computer vision applications , 2004, Image Vis. Comput..

[35]  J. R. Deller,et al.  Least-square identification with error bounds for real-time signal processing and control , 1993, Proc. IEEE.

[36]  Tõnu Trump,et al.  Maximum likelihood trend estimation in exponential noise , 2001, IEEE Trans. Signal Process..