Ultralow dissipation optomechanical resonators on a chip
暂无分享,去创建一个
O. Arcizet | T. J. Kippenberg | A. Schliesser | T. Kippenberg | A. Schliesser | O. Arcizet | G. Anetsberger | R. Rivière | R. Riviere | G. Anetsberger | T. Kippenberg
[1] K. Vahala,et al. Modal coupling in traveling-wave resonators. , 2002, Optics letters.
[2] M. Blencowe. Nanoelectromechanical systems , 2005, cond-mat/0502566.
[3] Ali Dabirian,et al. Radiation pressure driven vibrational modes in ultra-high-Q silica microspheres , 2007 .
[4] O. Arcizet,et al. Resolved Sideband Cooling of a Micromechanical Oscillator , 2007, 0709.4036.
[5] Anharmonic versus relaxational sound damping in glasses. II. Vitreous silica , 2005, cond-mat/0505560.
[6] Ilkka Tittonen,et al. Interferometric measurements of the position of a macroscopic body: towards observation of quantum limits , 1999 .
[7] Peter Michler,et al. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure , 2001 .
[8] T. Briant,et al. Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.
[9] K. Vahala,et al. Photonic RF Down-Converter Based on Optomechanical Oscillation , 2008, IEEE Photonics Technology Letters.
[10] M Pinard,et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. , 2006, Physical review letters.
[11] T. J. Kippenberg,et al. Ultra-high-Q toroid microcavity on a chip , 2003, Nature.
[12] Michael L. Roukes,et al. Putting mechanics into quantum mechanics , 2005 .
[13] R. Doremus,et al. Handbook of glass properties , 1986 .
[14] I. Wilson-Rae,et al. Intrinsic dissipation in nanomechanical resonators due to phonon tunneling , 2007, 0710.0200.
[15] C. Nguyen,et al. High-Q UHF micromechanical radial-contour mode disk resonators , 2005, Journal of Microelectromechanical Systems.
[16] H. Craighead,et al. Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators. , 2007, Nano letters.
[17] Clarence Zener,et al. Internal friction in solids , 1940 .
[18] Raymond D. Mindlin,et al. Thickness‐Shear and Flexural Vibrations of Crystal Plates , 1951 .
[19] S. Gigan,et al. Self-cooling of a micromirror by radiation pressure , 2006, Nature.
[20] M. Notomi,et al. Optomechanical wavelength and energy conversion in high- double-layer cavities of photonic crystal slabs. , 2006, Physical review letters.
[21] K. Vahala,et al. Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..
[22] M. D. LaHaye,et al. Cooling a nanomechanical resonator with quantum back-action , 2006, Nature.
[23] K. Vahala,et al. Cavity opto-mechanics , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.
[24] T. Carmon,et al. Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities , 2006, IEEE Journal of Selected Topics in Quantum Electronics.
[25] T. Kippenberg,et al. Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.
[26] L. Maleki,et al. Ultra high Q crystalline microcavities , 2005, International Quantum Electronics Conference, 2005..
[27] J. Teufel,et al. Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.
[28] Florian Marquardt,et al. Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.
[29] A. B. Manukin,et al. Measurement of Weak Forces in Physics Experiments , 1977 .
[30] Oskar Painter,et al. Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces , 2007 .
[31] T J Kippenberg,et al. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. , 2007, Physical review letters.
[32] M. Dykman. HEATING AND COOLING OF LOCAL AND QUASILOCAL VIBRATIONS BY A NONRESONANCE FIELD. , 1978 .
[33] M. Roukes. Nanoelectromechanical Systems , 2000, cond-mat/0008187.
[34] C. Zener. INTERNAL FRICTION IN SOLIDS. I. THEORY OF INTERNAL FRICTION IN REEDS , 1937 .
[35] T. Hänsch,et al. Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity , 1980 .
[36] S. Girvin,et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2008, Nature.
[37] T. J. Kippenberg,et al. Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip , 2004 .
[38] D. Bouwmeester. Sub-kelvin optical cooling of a micromechanical resonator , 2007 .
[39] S. Vyatchanin,et al. Low quantum noise tranquilizer for Fabry-Perot interferometer , 2002 .
[40] Edith Innerhofer,et al. An all-optical trap for a gram-scale mirror. , 2006, Physical review letters.
[41] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[42] K. Vahala,et al. Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006 .
[43] G. Rempe,et al. Measurement of ultralow losses in an optical interferometer. , 1992, Optics letters.
[44] C. Caves. Quantum Mechanical Noise in an Interferometer , 1981 .
[45] Optomechanical characterization of acoustic modes in a mirror , 2003, quant-ph/0305122.
[46] O. Arcizet,et al. High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators , 2008, 0805.1608.
[47] Xiao Liu,et al. Low-temperature thermal conductivity and acoustic attenuation in amorphous solids , 2002 .