Ultralow dissipation optomechanical resonators on a chip

Over recent years it has become experimentally possible to study the coupling of optical and mechanical modes by means of cavity-enhanced radiation pressure[1] which might enable ground state-cooling of macroscopic mechanical oscillators. For achieving this major goal in the field of cavity-optomechanics and for applications such as low-loss, narrowband ‘photonic clocks’ a combination of high optical finesse and high mechanical quality factors at mechanical oscillation frequencies exceeding the optical cavity's linewidth[1] is desirable. It has, however, so far not been possible to combine mechanical Q-factors comparable to those achieved in the field of nano- and microelectromechanical systems (e.g. [2]) with state-of-the-art values of optical finesse[3]. Here we show independent control over both optical and mechanical degrees of freedom in the same microscale optomechanical resonator[4].

[1]  K. Vahala,et al.  Modal coupling in traveling-wave resonators. , 2002, Optics letters.

[2]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[3]  Ali Dabirian,et al.  Radiation pressure driven vibrational modes in ultra-high-Q silica microspheres , 2007 .

[4]  O. Arcizet,et al.  Resolved Sideband Cooling of a Micromechanical Oscillator , 2007, 0709.4036.

[5]  Anharmonic versus relaxational sound damping in glasses. II. Vitreous silica , 2005, cond-mat/0505560.

[6]  Ilkka Tittonen,et al.  Interferometric measurements of the position of a macroscopic body: towards observation of quantum limits , 1999 .

[7]  Peter Michler,et al.  Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure , 2001 .

[8]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[9]  K. Vahala,et al.  Photonic RF Down-Converter Based on Optomechanical Oscillation , 2008, IEEE Photonics Technology Letters.

[10]  M Pinard,et al.  High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. , 2006, Physical review letters.

[11]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[12]  Michael L. Roukes,et al.  Putting mechanics into quantum mechanics , 2005 .

[13]  R. Doremus,et al.  Handbook of glass properties , 1986 .

[14]  I. Wilson-Rae,et al.  Intrinsic dissipation in nanomechanical resonators due to phonon tunneling , 2007, 0710.0200.

[15]  C. Nguyen,et al.  High-Q UHF micromechanical radial-contour mode disk resonators , 2005, Journal of Microelectromechanical Systems.

[16]  H. Craighead,et al.  Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators. , 2007, Nano letters.

[17]  Clarence Zener,et al.  Internal friction in solids , 1940 .

[18]  Raymond D. Mindlin,et al.  Thickness‐Shear and Flexural Vibrations of Crystal Plates , 1951 .

[19]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[20]  M. Notomi,et al.  Optomechanical wavelength and energy conversion in high- double-layer cavities of photonic crystal slabs. , 2006, Physical review letters.

[21]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[22]  M. D. LaHaye,et al.  Cooling a nanomechanical resonator with quantum back-action , 2006, Nature.

[23]  K. Vahala,et al.  Cavity opto-mechanics , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[24]  T. Carmon,et al.  Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[26]  L. Maleki,et al.  Ultra high Q crystalline microcavities , 2005, International Quantum Electronics Conference, 2005..

[27]  J. Teufel,et al.  Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.

[28]  Florian Marquardt,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[29]  A. B. Manukin,et al.  Measurement of Weak Forces in Physics Experiments , 1977 .

[30]  Oskar Painter,et al.  Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces , 2007 .

[31]  T J Kippenberg,et al.  Theory of ground state cooling of a mechanical oscillator using dynamical backaction. , 2007, Physical review letters.

[32]  M. Dykman HEATING AND COOLING OF LOCAL AND QUASILOCAL VIBRATIONS BY A NONRESONANCE FIELD. , 1978 .

[33]  M. Roukes Nanoelectromechanical Systems , 2000, cond-mat/0008187.

[34]  C. Zener INTERNAL FRICTION IN SOLIDS. I. THEORY OF INTERNAL FRICTION IN REEDS , 1937 .

[35]  T. Hänsch,et al.  Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity , 1980 .

[36]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2008, Nature.

[37]  T. J. Kippenberg,et al.  Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip , 2004 .

[38]  D. Bouwmeester Sub-kelvin optical cooling of a micromechanical resonator , 2007 .

[39]  S. Vyatchanin,et al.  Low quantum noise tranquilizer for Fabry-Perot interferometer , 2002 .

[40]  Edith Innerhofer,et al.  An all-optical trap for a gram-scale mirror. , 2006, Physical review letters.

[41]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[42]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006 .

[43]  G. Rempe,et al.  Measurement of ultralow losses in an optical interferometer. , 1992, Optics letters.

[44]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[45]  Optomechanical characterization of acoustic modes in a mirror , 2003, quant-ph/0305122.

[46]  O. Arcizet,et al.  High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators , 2008, 0805.1608.

[47]  Xiao Liu,et al.  Low-temperature thermal conductivity and acoustic attenuation in amorphous solids , 2002 .