Learning Metrics via Discriminant Kernels and Multidimensional Scaling: Toward Expected Euclidean Representation
暂无分享,去创建一个
[1] N. Cristianini,et al. On Kernel-Target Alignment , 2001, NIPS.
[2] Nello Cristianini,et al. Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..
[3] Andrew R. Webb,et al. Multidimensional scaling by iterative majorization using radial basis functions , 1995, Pattern Recognit..
[4] Alexander J. Smola,et al. Learning with kernels , 1998 .
[5] P. Groenen,et al. Modern multidimensional scaling , 1996 .
[6] J. Gower,et al. Metric and Euclidean properties of dissimilarity coefficients , 1986 .
[7] David Haussler,et al. Convolution kernels on discrete structures , 1999 .
[8] Keinosuke Fukunaga,et al. A Nonlinear Feature Extraction Algorithm Using Distance Transformation , 1972, IEEE Transactions on Computers.
[9] Michael I. Jordan,et al. Learning Graphical Models with Mercer Kernels , 2002, NIPS.
[10] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[11] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[12] G. Wahba. Spline models for observational data , 1990 .
[13] Trevor F. Cox,et al. Discriminant analysis using non-metric multidimensional scaling , 1993, Pattern Recognit..
[14] Michael I. Jordan,et al. Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.
[15] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[16] Nello Cristianini,et al. On the Extensions of Kernel Alignment , 2002 .
[17] N. Cristianini,et al. Optimizing Kernel Alignment over Combinations of Kernel , 2002 .
[18] Olivier Bousquet,et al. On the Complexity of Learning the Kernel Matrix , 2002, NIPS.