Fifty years of gating currents and channel gating

Retrospective on gating currents from their first recording in 1973 to the present day and their contribution to understanding channel gating.

[1]  F. Horrigan,et al.  A gating lever and molecular logic gate that couple voltage and calcium sensor activation to opening in BK potassium channels , 2022, Science advances.

[2]  B. Chanda,et al.  Charge-voltage curves of Shaker potassium channel are not hysteretic at steady state , 2022, bioRxiv.

[3]  R. Latorre,et al.  Mechanism of voltage sensing in Ca2+- and voltage-activated K+ (BK) channels , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[4]  F. Franciolini,et al.  The 70‐year search for the voltage‐sensing mechanism of ion channels , 2022, The Journal of physiology.

[5]  B. Roux,et al.  Mechanism of voltage gating in the voltage-sensing phosphatase Ci-VSP , 2022, bioRxiv.

[6]  S. Cannon,et al.  The distinct role of the four voltage sensors of the skeletal CaV1.1 channel in voltage-dependent activation , 2021, The Journal of general physiology.

[7]  R. Eisenberg,et al.  Gating current noise produced by Brownian models of a voltage sensor. , 2021, Biophysical journal.

[8]  B. Flucher,et al.  Structural determinants of voltage-gating properties in calcium channels , 2021, eLife.

[9]  F. Bezanilla,et al.  Molecular basis for functional connectivity between the voltage sensor and the selectivity filter gate in Shaker K+ channels , 2021, eLife.

[10]  S. Noskov,et al.  A second S4 movement opens hyperpolarization-activated HCN channels , 2021, Proceedings of the National Academy of Sciences.

[11]  R. Eisenberg,et al.  Multiscale modeling shows that dielectric differences make NaV channels faster than KV channels , 2021, The Journal of general physiology.

[12]  S. Cannon,et al.  Hypokalaemic periodic paralysis with a charge-retaining substitution in the voltage sensor , 2020, Brain communications.

[13]  D. Tobias,et al.  Voltage-dependent structural models of the human Hv1 proton channel from long-timescale molecular dynamics simulations , 2020, Proceedings of the National Academy of Sciences.

[14]  M. Clark,et al.  Electromechanical Coupling in the Hyperpolarization-Activated K+ Channel KAT1 , 2020, Nature.

[15]  H. Larsson,et al.  Gating mechanism of hyperpolarization-activated HCN pacemaker channels , 2020, Nature Communications.

[16]  L. Salkoff,et al.  Coupling of Ca2+ and voltage activation in BK channels through the αB helix/voltage sensor interface , 2020, Proceedings of the National Academy of Sciences.

[17]  L. Sforna,et al.  Voltage-dependent gating in K channels: experimental results and quantitative models , 2019, Pflügers Archiv - European Journal of Physiology.

[18]  R. MacKinnon,et al.  Molecular structures of the human Slo1 K+ channel in complex with β4 , 2019, eLife.

[19]  R. MacKinnon,et al.  Voltage Sensor Movements during Hyperpolarization in the HCN Channel , 2019, Cell.

[20]  L. Delemotte,et al.  Helix breaking transition in the S4 of HCN channel is critical for hyperpolarization-dependent gating , 2019, eLife.

[21]  Mark A. Zaydman,et al.  Two-stage electro–mechanical coupling of a KV channel in voltage-dependent activation , 2019, Nature Communications.

[22]  F. Bezanilla,et al.  Noncanonical mechanism of voltage sensor coupling to pore revealed by tandem dimers of Shaker , 2019, Nature Communications.

[23]  W. Catterall,et al.  Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel , 2019, Cell.

[24]  F. Bezanilla,et al.  Metal bridge in S4 segment supports helix transition in Shaker channel , 2019, bioRxiv.

[25]  Alexis Rohou,et al.  Structural Basis of Nav1.7 Inhibition by a Gating-Modifier Spider Toxin , 2019, Cell.

[26]  W. N. Zagotta,et al.  The HCN Channel Voltage Sensor Undergoes A Large Downward Motion During Hyperpolarization , 2019, bioRxiv.

[27]  P. Miranda,et al.  Voltage-dependent dynamics of the BK channel cytosolic gating ring are coupled to the membrane-embedded voltage sensor , 2018, eLife.

[28]  H. Gong,et al.  Structure of the human voltage-gated sodium channel Nav1.4 in complex with β1 , 2018, Science.

[29]  M. Chahine,et al.  A New Cardiac Channelopathy: From Clinical Phenotypes to Molecular Mechanisms Associated With Nav1.5 Gating Pores , 2018, Front. Cardiovasc. Med..

[30]  Y. Okamura,et al.  Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering. , 2018, Physiological reviews.

[31]  F. Franciolini,et al.  Simulation of Gating Currents of the Shaker K Channel Using a Brownian Model of the Voltage Sensor. , 2018, Biophysical journal.

[32]  R. Latorre,et al.  Gating charge displacement in a monomeric voltage-gated proton (Hv1) channel , 2018, Proceedings of the National Academy of Sciences.

[33]  W. N. Zagotta,et al.  Insights into the molecular mechanism for hyperpolarization-dependent activation of HCN channels , 2018, Proceedings of the National Academy of Sciences.

[34]  F. Bezanilla Gating currents , 2018, The Journal of general physiology.

[35]  I. S. Ramsey,et al.  Gating Currents in the Hv1 Proton Channel. , 2018, Biophysical journal.

[36]  W. Catterall,et al.  Structural Basis for Gating Pore Current in Periodic Paralysis , 2018, Nature.

[37]  Baron Chanda,et al.  Gating interaction maps reveal a noncanonical electromechanical coupling mode in the Shaker K+ channel , 2018, Nature Structural & Molecular Biology.

[38]  F. Barros,et al.  Gating mechanism of Kv11.1 (hERG) K+ channels without covalent connection between voltage sensor and pore domains , 2017, Pflügers Archiv - European Journal of Physiology.

[39]  E. Ríos,et al.  The voltage sensor of excitation–contraction coupling in mammals: Inactivation and interaction with Ca2+ , 2017, The Journal of general physiology.

[40]  B. Allard,et al.  Elevated resting H+ current in the R1239H type 1 hypokalaemic periodic paralysis mutated Ca2+ channel , 2017, The Journal of physiology.

[41]  Roderick MacKinnon,et al.  Cryo-EM Structure of the Open Human Ether-à-go-go-Related K+ Channel hERG , 2017, Cell.

[42]  L. Salkoff,et al.  Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels , 2017, The Journal of General Physiology.

[43]  Weiyun Huang,et al.  Structure-based assessment of disease-related mutations in human voltage-gated sodium channels , 2017, Protein & Cell.

[44]  R. MacKinnon,et al.  Structures of the Human HCN1 Hyperpolarization-Activated Channel , 2017, Cell.

[45]  R. MacKinnon,et al.  Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel , 2016, Nature.

[46]  Roderick MacKinnon,et al.  Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism , 2016, Science.

[47]  T. DeCoursey,et al.  Insights into the structure and function of HV1 from a meta-analysis of mutation studies , 2016, The Journal of general physiology.

[48]  V. Yarov-Yarovoy,et al.  Molecular Interactions in the Voltage Sensor Controlling Gating Properties of CaV Calcium Channels. , 2016, Structure.

[49]  M. Boutjdir,et al.  Mutations in the Voltage Sensors of Domains I and II of Nav1.5 that are Associated with Arrhythmias and Dilated Cardiomyopathy Generate Gating Pore Currents , 2015, Front. Pharmacol..

[50]  Rama Ranganathan,et al.  Evolution-Based Functional Decomposition of Proteins , 2015, bioRxiv.

[51]  Itzel G. Ishida,et al.  Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel , 2015, The Journal of general physiology.

[52]  L. Pardo,et al.  Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains , 2015, Nature Communications.

[53]  Jianmin Cui,et al.  BK channels: multiple sensors, one activation gate , 2015, Front. Physiol..

[54]  M. Klein,et al.  Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy , 2015, The Journal of general physiology.

[55]  Mark A. Zaydman,et al.  Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel , 2014, eLife.

[56]  R. Olcese,et al.  Functional heterogeneity of the four voltage sensors of a human L-type calcium channel , 2014, Proceedings of the National Academy of Sciences.

[57]  Charlotte K. Colenso,et al.  Voltage Sensor Gating Charge Transfer in a hERG Potassium Channel Model , 2014, Biophysical journal.

[58]  M. Capasso Regulation of immune responses by proton channels , 2014, Immunology.

[59]  F. Tombola,et al.  Molecular determinants of Hv1 proton channel inhibition by guanidine derivatives , 2014, Proceedings of the National Academy of Sciences.

[60]  J. Galpin,et al.  Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains , 2014, The Journal of general physiology.

[61]  K. Sampson,et al.  KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps , 2014, Nature Communications.

[62]  Y. Okamura,et al.  X-ray crystal structure of voltage-gated proton channel , 2014, Nature Structural &Molecular Biology.

[63]  Long-Jun Wu Voltage-Gated Proton Channel HV1 in Microglia , 2014, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[64]  J. V. Van Etten,et al.  The voltage-sensing domain of a phosphatase gates the pore of a potassium channel , 2013, The Journal of general physiology.

[65]  H. Larsson,et al.  Molecular mechanism of voltage sensing in voltage-gated proton channels , 2013, The Journal of general physiology.

[66]  Klaus Schulten,et al.  Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain , 2013, Nature Structural &Molecular Biology.

[67]  S. Cannon,et al.  A calcium channel mutant mouse model of hypokalemic periodic paralysis. , 2012, The Journal of clinical investigation.

[68]  M. Klein,et al.  Gating pore currents and the resting state of Nav1.4 voltage sensor domains , 2012, Proceedings of the National Academy of Sciences.

[69]  E. Perozo,et al.  Expression, purification, and reconstitution of the voltage-sensing domain from Ci-VSP. , 2012, Biochemistry.

[70]  R. Hedrich Ion channels in plants. , 2012, Physiological reviews.

[71]  C. Villalba-Galea Voltage-Controlled Enzymes: The New Janus Bifrons , 2012, Front. Pharmacol..

[72]  R. Blunck,et al.  Mechanism of Electromechanical Coupling in Voltage-Gated Potassium Channels , 2012, Front. Pharmacol..

[73]  D. Tobias,et al.  Microscopic origin of gating current fluctuations in a potassium channel voltage sensor. , 2012, Biophysical journal.

[74]  William A Catterall,et al.  Voltage‐gated sodium channels at 60: structure, function and pathophysiology , 2012, The Journal of physiology.

[75]  M. Brink,et al.  A Proton Leak Current through the Cardiac Sodium Channel Is Linked to Mixed Arrhythmia and the Dilated Cardiomyopathy Phenotype , 2012, PloS one.

[76]  William A. Catterall,et al.  Crystal structure of a voltage-gated sodium channel in two potentially inactivated states , 2012, Nature.

[77]  Jianhua He,et al.  Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel , 2012, Nature.

[78]  R. Olcese,et al.  The Contribution of RCK Domains to Human BK Channel Allosteric Activation* , 2012, The Journal of Biological Chemistry.

[79]  Björn Wallner,et al.  Tracking a complete voltage-sensor cycle with metal-ion bridges , 2012, Proceedings of the National Academy of Sciences.

[80]  Y. Okamura,et al.  The cytoplasmic coiled-coil mediates cooperative gating temperature sensitivity in the voltage-gated H+ channel Hv1 , 2012, Nature Communications.

[81]  W. Catterall,et al.  Gating charge interactions with the S1 segment during activation of a Na+ channel voltage sensor , 2011, Proceedings of the National Academy of Sciences.

[82]  J. Galpin,et al.  Contributions of Counter-Charge in a Potassium Channel Voltage-Sensor Domain , 2011, Nature chemical biology.

[83]  F. Bezanilla,et al.  Control of a final gating charge transition by a hydrophobic residue in the S2 segment of a K+ channel voltage sensor , 2011, Proceedings of the National Academy of Sciences.

[84]  Werner Treptow,et al.  Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations , 2011, Proceedings of the National Academy of Sciences.

[85]  R. Blunck,et al.  Mode shift of the voltage sensors in Shaker K+ channels is caused by energetic coupling to the pore domain , 2011, The Journal of general physiology.

[86]  T. DeCoursey,et al.  Oligomerization of the voltage gated proton channel , 2010, Channels.

[87]  Jianpeng Ma,et al.  Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement , 2010, Proceedings of the National Academy of Sciences.

[88]  S. Cannon Voltage‐sensor mutations in channelopathies of skeletal muscle , 2010, The Journal of physiology.

[89]  Xiao Tao,et al.  A Gating Charge Transfer Center in Voltage Sensors , 2010, Science.

[90]  R. Olcese,et al.  Operation of the voltage sensor of a human voltage- and Ca2+-activated K+ channel , 2010, Proceedings of the National Academy of Sciences.

[91]  E. Isacoff,et al.  The opening of the two pores of the Hv1 voltage-gated proton channel is tuned by cooperativity , 2009, Nature Structural &Molecular Biology.

[92]  H. Larsson,et al.  Strong cooperativity between subunits in voltage-gated proton channels , 2009, Nature Structural &Molecular Biology.

[93]  Eric Gouaux,et al.  Pore architecture and ion sites in acid sensing ion channels and P2X receptors , 2009, Nature.

[94]  D. Kullmann,et al.  Voltage sensor charge loss accounts for most cases of hypokalemic periodic paralysis , 2009, Neurology.

[95]  S. Heinemann,et al.  Modulation of BKCa channel gating by endogenous signaling molecules. , 2009, Physiology.

[96]  D. H. Cox,et al.  Measuring the Influence of the BKCa β1 Subunit on Ca2+ Binding to the BKCa Channel , 2009, The Journal of general physiology.

[97]  B. Chanda,et al.  Local Anesthetics Disrupt Energetic Coupling between the Voltage-sensing Segments of a Sodium Channel , 2009, The Journal of general physiology.

[98]  W. Catterall,et al.  Depolarization-activated gating pore current conducted by mutant sodium channels in potassium-sensitive normokalemic periodic paralysis , 2008, Proceedings of the National Academy of Sciences.

[99]  M. Sansom,et al.  Kv Channel Gating Requires a Compatible S4-S5 Linker and Bottom Part of S6, Constrained by Non-interacting Residues , 2008, The Journal of general physiology.

[100]  F. Bezanilla,et al.  S4-based voltage sensors have three major conformations , 2008, Proceedings of the National Academy of Sciences.

[101]  Y. Okamura,et al.  Multimeric nature of voltage-gated proton channels , 2008, Proceedings of the National Academy of Sciences.

[102]  R. MacKinnon,et al.  Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1 , 2008, Proceedings of the National Academy of Sciences.

[103]  A. Karlin,et al.  Position and Role of the BK Channel α Subunit S0 Helix Inferred from Disulfide Crosslinking , 2008, The Journal of general physiology.

[104]  E. Isacoff,et al.  The Voltage-Gated Proton Channel Hv1 Has Two Pores, Each Controlled by One Voltage Sensor , 2008, Neuron.

[105]  F. Bezanilla,et al.  A Common Pathway for Charge Transport through Voltage-Sensing Domains , 2008, Neuron.

[106]  H. Lerche,et al.  Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations , 2007, Neurology.

[107]  E. Campbell,et al.  Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment , 2007, Nature.

[108]  Benoît Roux,et al.  Closing In on the Resting State of the Shaker K+ Channel , 2007, Neuron.

[109]  F. Bezanilla,et al.  β-Scorpion Toxin Modifies Gating Transitions in All Four Voltage Sensors of the Sodium Channel , 2007, The Journal of general physiology.

[110]  R. Olcese,et al.  Modes of Operation of the BKCa Channel β2 Subunit , 2007, The Journal of general physiology.

[111]  A. Bruening-Wright,et al.  Kinetic Relationship between the Voltage Sensor and the Activation Gate in spHCN Channels , 2007, The Journal of general physiology.

[112]  S. Cannon,et al.  A Na+ Channel Mutation Linked to Hypokalemic Periodic Paralysis Exposes a Proton-selective Gating Pore , 2007, The Journal of general physiology.

[113]  W. Catterall,et al.  Gating pore current in an inherited ion channelopathy , 2007, Nature.

[114]  S. Siegelbaum,et al.  Voltage Sensor Movement and cAMP Binding Allosterically Regulate an Inherently Voltage-independent Closed−Open Transition in HCN Channels , 2007, The Journal of general physiology.

[115]  A. Bruening-Wright,et al.  Slow Conformational Changes of the Voltage Sensor during the Mode Shift in Hyperpolarization-Activated Cyclic-Nucleotide-Gated Channels , 2007, The Journal of Neuroscience.

[116]  K. Swartz,et al.  Functional Interactions at the Interface between Voltage-Sensing and Pore Domains in the Shaker Kv Channel , 2006, Neuron.

[117]  R. Olcese,et al.  Voltage-dependent conformational changes in human Ca2+- and voltage-activated K+ channel, revealed by voltage-clamp fluorometry , 2006, Proceedings of the National Academy of Sciences.

[118]  M. Tristani-Firouzi,et al.  The S4-S5 Linker Directly Couples Voltage Sensor Movement to the Activation Gate in the Human Ether-á-go-go-related Gene (hERG) K+ Channel* , 2006, Journal of Biological Chemistry.

[119]  Yasushi Okamura,et al.  A Voltage Sensor-Domain Protein Is a Voltage-Gated Proton Channel , 2006, Science.

[120]  David E. Clapham,et al.  A voltage-gated proton-selective channel lacking the pore domain , 2006, Nature.

[121]  M. Sanguinetti,et al.  hERG potassium channels and cardiac arrhythmia , 2006, Nature.

[122]  Zhongming Ma,et al.  Role of Charged Residues in the S1–S4 Voltage Sensor of BK Channels , 2006, The Journal of general physiology.

[123]  Francisco Bezanilla,et al.  Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement , 2005, Nature.

[124]  E. Campbell,et al.  Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel , 2005, Science.

[125]  E. Campbell,et al.  Voltage Sensor of Kv1.2: Structural Basis of Electromechanical Coupling , 2005, Science.

[126]  Yasushi Okamura,et al.  Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor , 2005, Nature.

[127]  E. Isacoff,et al.  Voltage-Sensing Arginines in a Potassium Channel Permeate and Occlude Cation-Selective Pores , 2005, Neuron.

[128]  A. Labro,et al.  Coupling of Voltage Sensing to Channel Opening Reflects Intrasubunit Interactions in Kv Channels , 2005, The Journal of general physiology.

[129]  P. Laforêt,et al.  New mutations of SCN4A cause a potassium-sensitive normokalemic periodic paralysis , 2004, Neurology.

[130]  F. Bezanilla,et al.  Gating of the Bacterial Sodium Channel, NaChBac , 2004, The Journal of general physiology.

[131]  F. Bezanilla,et al.  A proton pore in a potassium channel voltage sensor reveals a focused electric field , 2004, Nature.

[132]  S. Siegelbaum,et al.  Hyperpolarization-activated cation currents: from molecules to physiological function. , 2003, Annual review of physiology.

[133]  R. Latorre,et al.  Molecular Coupling between Voltage Sensor and Pore Opening in the Arabidopsis Inward Rectifier K+ Channel KAT1 , 2003, The Journal of general physiology.

[134]  Francisco Bezanilla,et al.  Fast gating in the Shaker K+ channel and the energy landscape of activation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[135]  T. DeCoursey,et al.  Properties of Single Voltage-gated Proton Channels in Human Eosinophils Estimated by Noise Analysis and by Direct Measurement , 2003, The Journal of general physiology.

[136]  E. Ríos,et al.  Two components of voltage-dependent inactivation in Ca(v)1.2 channels revealed by its gating currents. , 2003, Biophysical journal.

[137]  J. Cruickshank,et al.  The hydration structure of guanidinium and thiocyanate ions: Implications for protein stability in aqueous solution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[138]  F. Bezanilla,et al.  Tracking Voltage-dependent Conformational Changes in Skeletal Muscle Sodium Channel during Activation , 2002, The Journal of general physiology.

[139]  Zhe Lu,et al.  Coupling between Voltage Sensors and Activation Gate in Voltage-gated K+ Channels , 2002, The Journal of general physiology.

[140]  F. Elinder,et al.  Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages , 2002, Nature.

[141]  Richard W. Aldrich,et al.  Coupling between Voltage Sensor Activation, Ca2+ Binding and Channel Opening in Large Conductance (BK) Potassium Channels , 2002, The Journal of general physiology.

[142]  C. Lingle,et al.  Multiple regulatory sites in large-conductance calcium-activated potassium channels , 2002, Nature.

[143]  D. Hackos,et al.  Scanning the Intracellular S6 Activation Gate in the Shaker K+ Channel , 2002, The Journal of general physiology.

[144]  Youxing Jiang,et al.  Crystal structure and mechanism of a calcium-gated potassium channel , 2002, Nature.

[145]  Gary Yellen,et al.  Tight Steric Closure at the Intracellular Activation Gate of a Voltage-Gated K+ Channel , 2001, Neuron.

[146]  Zhe Lu,et al.  Ion conduction pore is conserved among potassium channels , 2001, Nature.

[147]  Karin Dedek,et al.  Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[148]  Dario DiFrancesco,et al.  Integrated Allosteric Model of Voltage Gating of Hcn Channels , 2001, The Journal of general physiology.

[149]  Francisco Bezanilla,et al.  Histidine Scanning Mutagenesis of Basic Residues of the S4 Segment of the Shaker K+ Channel , 2001, The Journal of general physiology.

[150]  R. Aldrich,et al.  Allosteric linkage between voltage and Ca(2+)-dependent activation of BK-type mslo1 K(+) channels. , 2000, Biochemistry.

[151]  L. Kaczmarek,et al.  Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain. , 2000, Brain research. Molecular brain research.

[152]  R. Horn,et al.  Role of Domain 4 in Sodium Channel Slow Inactivation , 2000, The Journal of general physiology.

[153]  W. Catterall,et al.  From Ionic Currents to Molecular Mechanisms The Structure and Function of Voltage-Gated Sodium Channels , 2000, Neuron.

[154]  D. Papazian,et al.  Voltage-Dependent Structural Interactions in the Shaker K+ Channel , 2000, The Journal of general physiology.

[155]  Francisco Bezanilla,et al.  Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy , 1999, Nature.

[156]  F. Sigworth,et al.  Voltage Sensitivity and Gating Charge in Shaker and Shab Family Potassium Channels , 1999, The Journal of general physiology.

[157]  R. Ruff Insulin acts in hypokalemic periodic paralysis by reducing inward rectifier K+ current. , 1999, Neurology.

[158]  P. Lichter,et al.  Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[159]  R. Aldrich,et al.  Allosteric Voltage Gating of Potassium Channels II , 1999, The Journal of general physiology.

[160]  R. Aldrich,et al.  Allosteric Voltage Gating of Potassium Channels II: Mslo Channel Gating Charge Movement in the Absence of Ca2+ , 1999 .

[161]  R. Aldrich,et al.  Mutations in the S4 Region Isolate the Final Voltage-dependent Cooperative Step in Potassium Channel Activation , 1999, The Journal of general physiology.

[162]  F Bezanilla,et al.  Kramers' diffusion theory applied to gating kinetics of voltage-dependent ion channels. , 1999, Biophysical journal.

[163]  R. Latorre,et al.  Role of the S4 Segment in a Voltage-dependent Calcium-sensitive Potassium (hSlo) Channel* , 1998, The Journal of Biological Chemistry.

[164]  F. Bezanilla,et al.  Structural Implications of Fluorescence Quenching in the Shaker K+ Channel , 1998, The Journal of general physiology.

[165]  G. Yellen,et al.  The Activation Gate of a Voltage-Gated K+ Channel Can Be Trapped in the Open State by an Intersubunit Metal Bridge , 1998, Neuron.

[166]  Francisco Bezanilla,et al.  Voltage Gating of Shaker K+ Channels , 1998, The Journal of general physiology.

[167]  F. Bezanilla,et al.  Fast Inactivation in Shaker K+ Channels , 1998, The Journal of general physiology.

[168]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[169]  Richard W. Aldrich,et al.  Uncharged S4 Residues and Cooperativity in Voltage-dependent Potassium Channel Activation , 1998, The Journal of general physiology.

[170]  A. Brown,et al.  Molecular determinants of dofetilide block of HERG K+ channels. , 1998, Circulation research.

[171]  Fred J. Sigworth,et al.  Activation of Shaker Potassium Channels , 1998, The Journal of general physiology.

[172]  N. Schoppa,et al.  Activation of Shaker Potassium Channels , 1998, The Journal of general physiology.

[173]  Fred J. Sigworth,et al.  Activation of Shaker Potassium Channels , 1998, The Journal of general physiology.

[174]  F. Bezanilla,et al.  Correlation between Charge Movement and Ionic Current during Slow Inactivation in Shaker K+ Channels , 1997, The Journal of general physiology.

[175]  R. Latorre,et al.  Voltage-controlled gating in a large conductance Ca2+-sensitive K+channel (hslo). , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[176]  D. Papazian,et al.  Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits. , 1997, Biophysical journal.

[177]  E. Stefani,et al.  Effective gating charges per channel in voltage-dependent K+ and Ca2+ channels , 1996, The Journal of general physiology.

[178]  Roderick MacKinnon,et al.  Contribution of the S4 Segment to Gating Charge in the Shaker K+ Channel , 1996, Neuron.

[179]  Francisco Bezanilla,et al.  Voltage-Sensing Residues in the S2 and S4 Segments of the Shaker K+ Channel , 1996, Neuron.

[180]  I. Josephson,et al.  The beta subunit increases Ca2+ currents and gating charge movements of human cardiac L-type Ca2+ channels. , 1996, Biophysical journal.

[181]  Ehud Y. Isacoff,et al.  Transmembrane Movement of the Shaker K+ Channel S4 , 1996, Neuron.

[182]  J. Patlak,et al.  Transfer of twelve charges is needed to open skeletal muscle Na+ channels , 1995, The Journal of general physiology.

[183]  R. Horn,et al.  Evidence for voltage-dependent S4 movement in sodium channels , 1995, Neuron.

[184]  F Bezanilla,et al.  Gating current noise produced by elementary transitions in Shaker potassium channels. , 1994, Science.

[185]  F Bezanilla,et al.  Gating of Shaker K+ channels: II. The components of gating currents and a model of channel activation. , 1994, Biophysical journal.

[186]  Chung-Chin Kuo,et al.  Na+ channels must deactivate to recover from inactivation , 1994, Neuron.

[187]  R. Aldrich,et al.  Shaker potassium channel gating. I: Transitions near the open state , 1994, The Journal of general physiology.

[188]  T Hoshi,et al.  Shaker potassium channel gating. II: Transitions in the activation pathway , 1994, The Journal of general physiology.

[189]  T Hoshi,et al.  Shaker potassium channel gating. III: Evaluation of kinetic models for activation , 1994, The Journal of general physiology.

[190]  E. Stefani,et al.  Potentiation by the beta subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. , 1993, Science.

[191]  Francisco Bezanilla,et al.  Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ channels , 1993, Neuron.

[192]  K. Lindpaintner,et al.  Gating charge differences between two voltagegated K+ channels are due to the specific charge content of their respective S4 regions , 1993, Neuron.

[193]  G. Váradi,et al.  Characterization of β subunit modulation of a rabbit cardiac L‐type Ca2+ channel α1 subunit as expressed in mouse L cells , 1993 .

[194]  N. Greeff,et al.  The early phase of sodium channel gating current in the squid giant axon , 1992, European Biophysics Journal.

[195]  F Bezanilla,et al.  Gating currents in Shaker K+ channels. Implications for activation and inactivation models. , 1992, Biophysical journal.

[196]  M. Tanouye,et al.  The size of gating charge in wild-type and mutant Shaker potassium channels. , 1992, Science.

[197]  S. Jones,et al.  Calcium currents in the A7r5 smooth muscle-derived cell line. An allosteric model for calcium channel activation and dihydropyridine agonist action , 1992, The Journal of general physiology.

[198]  F. Bezanilla,et al.  Single-channel, macroscopic, and gating currents from sodium channels in the squid giant axon. , 1991, Biophysical journal.

[199]  F Bezanilla,et al.  A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon. , 1991, Biophysical journal.

[200]  F Bezanilla,et al.  Molecular basis of gating charge immobilization in Shaker potassium channels. , 1991, Science.

[201]  J. Starkus,et al.  Gating current "fractionation" in crayfish giant axons. , 1991, Biophysical journal.

[202]  W. Lederer,et al.  Properties of L-type calcium channel gating current in isolated guinea pig ventricular myocytes , 1991, The Journal of general physiology.

[203]  Walter Stühmer,et al.  Gating currents of inactivating and non-inactivating potassium channels expressed in Xenopus oocytes , 1991, Pflügers Archiv.

[204]  B. Rudy,et al.  A role for hydrophobic residues in the voltage-dependent gating of Shaker K+ channels. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[205]  R. MacKinnon Determination of the subunit stoichiometry of a voltage-activated potassium channel , 1991, Nature.

[206]  G. Matsumoto,et al.  Anticalmodulin drugs block the sodium gating current of squid giant axons , 1991, The Journal of Membrane Biology.

[207]  G. Dubyak,et al.  Calcium currents in the A7r5 smooth muscle-derived cell line , 1990, Pflügers Archiv.

[208]  D. McCormick,et al.  Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. , 1990, The Journal of physiology.

[209]  T Hoshi,et al.  Biophysical and molecular mechanisms of Shaker potassium channel inactivation , 1990, Science.

[210]  P. Ellinor,et al.  cDNA cloning of a dihydropyridine-sensitive calcium channel from rat aorta. Evidence for the existence of alternatively spliced forms. , 1990, The Journal of biological chemistry.

[211]  R. Keynes,et al.  Kinetic analysis of the sodium gating current in the squid giant axon , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[212]  H. Meves,et al.  A slow component in the gating current of the frog node of Ranvier , 1990, Pflügers Archiv.

[213]  W. Lederer,et al.  Intramembrane charge movement in guinea‐pig and rat ventricular myocytes. , 1989, The Journal of physiology.

[214]  S. Narumiya,et al.  Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel , 1989, Nature.

[215]  F. Conti,et al.  Structural parts involved in activation and inactivation of the sodium channel , 1989, Nature.

[216]  F. Conti,et al.  Quantal charge redistributions accompanying the structural transitions of sodium channels , 1989, European Biophysics Journal.

[217]  M. Tanouye,et al.  Multiple products of the drosophila Shaker gene may contribute to potassium channel diversity , 1988, Neuron.

[218]  O. Pongs,et al.  Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. , 1988, The EMBO journal.

[219]  R. Fitts,et al.  Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation‐contraction coupling. , 1988, The Journal of physiology.

[220]  E. Stefani,et al.  Effects of extracellular calcium on calcium movements of excitation‐contraction coupling in frog skeletal muscle fibres. , 1988, The Journal of physiology.

[221]  F Bezanilla,et al.  Single sodium channels from the squid giant axon. , 1987, Biophysical journal.

[222]  Y. Jan,et al.  Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. , 1987, Science.

[223]  V. Flockerzi,et al.  Primary structure of the receptor for calcium channel blockers from skeletal muscle , 1987, Nature.

[224]  E. Ríos,et al.  Intramembrane charge movement in frog skeletal muscle fibres. Properties of charge 2. , 1987, The Journal of physiology.

[225]  F. Bezanilla,et al.  Sodium channel gating currents. Origin of the rising phase , 1987, The Journal of general physiology.

[226]  E. Ríos,et al.  Involvement of dihydropyridine receptors in excitation–contraction coupling in skeletal muscle , 1987, Nature.

[227]  R. Greenblatt,et al.  The structure of the voltage‐sensitive sodium channel , 1985, FEBS letters.

[228]  F. Bezanilla,et al.  Activation of squid axon K+ channels. Ionic and gating current studies , 1985, The Journal of general physiology.

[229]  Yuichi Kanaoka,et al.  Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence , 1984, Nature.

[230]  R Horn,et al.  Statistical properties of single sodium channels , 1984, The Journal of general physiology.

[231]  C. F. Stevens,et al.  A reinterpretation of mammalian sodium channel gating based on single channel recording , 1983, Nature.

[232]  F. Bezanilla,et al.  Sodium and gating current time shifts resulting from changes in initial conditions , 1983, The Journal of general physiology.

[233]  K L Magleby,et al.  Properties of single calcium‐activated potassium channels in cultured rat muscle , 1982, The Journal of physiology.

[234]  Francisco Bezanilla,et al.  Gating currents associated with potassium channel activation , 1982, Nature.

[235]  F. Bezanilla,et al.  Distribution and kinetics of membrane dielectric polarization. II. Frequency domain studies of gating currents , 1982, The Journal of general physiology.

[236]  F Bezanilla,et al.  Distribution and kinetics of membrane dielectric polarization. 1. Long- term inactivation of gating currents , 1982, The Journal of general physiology.

[237]  C. Armstrong,et al.  Sodium channels and gating currents. , 1981, Physiological reviews.

[238]  W. Nonner,et al.  Relations between the inactivation of sodium channels and the immobilization of gating charge in frog myelinated nerve , 1980, The Journal of physiology.

[239]  W. Almers,et al.  Survival of K+ permeability and gating currents in squid axons perfused with K+-free media , 1980, The Journal of general physiology.

[240]  C. Armstrong,et al.  Fast and slow steps in the activation of sodium channels , 1979, The Journal of general physiology.

[241]  H. Brown,et al.  How does adrenaline accelerate the heart? , 1979, Nature.

[242]  F. Bezanilla,et al.  Temperature effects on gating currents in the squid giant axon. , 1978, Biophysical journal.

[243]  C. Armstrong,et al.  Immobilisation of gating charge by a substance that simulates inactivation , 1978, Nature.

[244]  F Bezanilla,et al.  Inactivation of the sodium channel. I. Sodium current experiments , 1977, The Journal of general physiology.

[245]  F. Bezanilla,et al.  Kinetic properties and inactivation of the gating currents of sodium channels in squid axon. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[246]  E. Rojas,et al.  Gating currents in the node of Ranvier: voltage and time dependence. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[247]  H. Meves The effect of holding potential on the asymmetry currents in squid giant axons , 1974, The Journal of physiology.

[248]  R. Keynes,et al.  Kinetics and steady‐state properties of the charged system controlling sodium conductance in the squid giant axon , 1974, The Journal of physiology.

[249]  Francisco Bezanilla,et al.  Charge Movement Associated with the Opening and Closing of the Activation Gates of the Na Channels , 1974, The Journal of general physiology.

[250]  F. Bezanilla,et al.  Currents Related to Movement of the Gating Particles of the Sodium Channels , 1973, Nature.

[251]  W. Chandler,et al.  Voltage Dependent Charge Movement in Skeletal Muscle: a Possible Step in Excitation–Contraction Coupling , 1973, Nature.

[252]  A. Hodgkin,et al.  Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[253]  A. Hodgkin,et al.  Measurement of current‐voltage relations in the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[254]  A. Hodgkin,et al.  The dual effect of membrane potential on sodium conductance in the giant axon of Loligo , 1952, The Journal of physiology.

[255]  S. Cannon Sodium Channelopathies of Skeletal Muscle. , 2018, Handbook of experimental pharmacology.

[256]  Osvaldo Alvarez,et al.  Molecular Determinants of BK Channel Functional Diversity and Functioning. , 2017, Physiological reviews.

[257]  T. DeCoursey,et al.  Consequences of dimerization of the voltage-gated proton channel. , 2013, Progress in molecular biology and translational science.

[258]  Ehud Y Isacoff,et al.  Subunit organization and functional transitions in Ci-VSP , 2008, Nature Structural &Molecular Biology.

[259]  Thomas V. McDonald,et al.  S641 contributes HERG K+ channel inactivation , 2007, Cell Biochemistry and Biophysics.

[260]  S. Cannon,et al.  The primary periodic paralyses: diagnosis, pathogenesis and treatment. , 2006, Brain : a journal of neurology.

[261]  R. Horn,et al.  Effect of S6 tail mutations on charge movement in Shaker potassium channels. , 2003, Biophysical journal.

[262]  U. Kaupp,et al.  Molecular diversity of pacemaker ion channels. , 2001, Annual review of physiology.

[263]  F. Bezanilla,et al.  Cut-open oocyte voltage-clamp technique. , 1998, Methods in enzymology.

[264]  F. Bezanilla,et al.  Fast Inactivation in Shaker K+ Channels , 1998, The Journal of general physiology.

[265]  R. Horn,et al.  Molecular Basis of Charge Movement in Voltage-Gated Sodium Channels , 1996, Neuron.

[266]  C. Bellone,et al.  ON A ROLE , 1996 .

[267]  F. Bezanilla,et al.  Voltage-dependent gating of ionic channels. , 1994, Annual review of biophysics and biomolecular structure.

[268]  D DiFrancesco,et al.  Pacemaker mechanisms in cardiac tissue. , 1993, Annual review of physiology.

[269]  F. Sigworth,et al.  Fluctuations in ion channel gating currents. Analysis of nonstationary shot noise. , 1993, Biophysical journal.

[270]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[271]  W. Catterall,et al.  Molecular properties of voltage-sensitive sodium channels. , 1986, Annual review of biochemistry.

[272]  F. Bezanilla Voltage-Dependent Gating , 1986 .

[273]  H. Guy,et al.  Molecular model of the action potential sodium channel. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[274]  Y. Blatt,et al.  Inferences derived from computer-aided analysis of the EZectrophorus electricus channel primary structure , 1985 .

[275]  R. H. Adrian,et al.  Charge movement in the membrane of striated muscle. , 1978, Annual review of biophysics and bioengineering.

[276]  W. Almers,et al.  Gating currents and charge movements in excitable membranes. , 1978, Reviews of physiology, biochemistry and pharmacology.

[277]  Francisco Bezanilla,et al.  Inactivation of the Sodium Channel , 2003 .

[278]  W. Wooster,et al.  Crystal structure of , 2005 .