Circular-Shift Linear Network Coding

We study a class of linear network coding (LNC) schemes, called <italic>circular-shift</italic> LNC, whose encoding operations consist of only circular-shifts and bit-wise additions. Formulated as a special vector linear code over GF(2), an <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>-dimensional circular-shift linear code of degree <inline-formula> <tex-math notation="LaTeX">$\delta $ </tex-math></inline-formula> restricts its local encoding kernels to be the summation of at most <inline-formula> <tex-math notation="LaTeX">$\delta $ </tex-math></inline-formula> cyclic permutation matrices of size <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>. We show that on a general network, for a certain block length <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>, every scalar linear solution over GF(<inline-formula> <tex-math notation="LaTeX">$2^{L-1}$ </tex-math></inline-formula>) can induce an <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>-dimensional circular-shift linear solution with 1-bit redundancy per-edge transmission. Consequently, specific to a multicast network, such a circular-shift linear solution of an arbitrary degree <inline-formula> <tex-math notation="LaTeX">$\delta $ </tex-math></inline-formula> can be efficiently constructed, which has an interesting complexity tradeoff between encoding and decoding with different choices of <inline-formula> <tex-math notation="LaTeX">$\delta $ </tex-math></inline-formula>. By further proving that circular-shift LNC is insufficient to achieve the exact capacity of certain multicast networks, we show the optimality of the efficiently constructed circular-shift linear solution in the sense that its 1-bit redundancy is inevitable. Finally, both theoretical and numerical analysis imply that with increasing <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>, a randomly constructed circular-shift linear code has linear solvability behavior comparable to a randomly constructed permutation-based linear code, but has shorter overheads.

[1]  Qiuju Diao,et al.  Cyclic and Quasi-Cyclic LDPC Codes on Constrained Parity-Check Matrices and Their Trapping Sets , 2012, IEEE Transactions on Information Theory.

[2]  Shuo-Yen Robert Li,et al.  Linear network coding , 2003, IEEE Trans. Inf. Theory.

[3]  Qin Huang,et al.  Quasi-Cyclic LDPC Codes: An Algebraic Construction, Rank Analysis, and Codes on Latin Squares , 2010, IEEE Transactions on Communications.

[4]  Alireza Keshavarz-Haddad,et al.  Rotate-and-add coding: A novel algebraic network coding scheme , 2010, 2010 IEEE Information Theory Workshop.

[5]  Minghua Chen,et al.  BASIC Codes: Low-Complexity Regenerating Codes for Distributed Storage Systems , 2016, IEEE Transactions on Information Theory.

[6]  Ming Xiao,et al.  A Binary Coding Approach for Combination Networks and General Erasure Networks , 2007, 2007 IEEE International Symposium on Information Theory.

[7]  Sidharth Jaggi,et al.  Low Complexity Encoding for Network Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[8]  Kenneth Zeger,et al.  Linear Network Coding Over Rings – Part II: Vector Codes and Non-Commutative Alphabets , 2016, IEEE Transactions on Information Theory.

[9]  Tuvi Etzion,et al.  Vector network coding based on subspace codes outperforms scalar linear network coding , 2016, ISIT.

[10]  Randall Dougherty,et al.  Networks, Matroids, and Non-Shannon Information Inequalities , 2007, IEEE Transactions on Information Theory.

[11]  Baochun Li,et al.  Random Network Coding in Peer-to-Peer Networks: From Theory to Practice , 2011, Proceedings of the IEEE.

[12]  N. Sloane The on-line encyclopedia of integer sequences , 2018, Notices of the American Mathematical Society.

[13]  Qifu Tyler Sun,et al.  Design of Quantum LDPC Codes From Quadratic Residue Sets , 2018, IEEE Transactions on Communications.

[14]  Morris Newman Circulants and difference sets , 1983 .

[15]  K. Jain,et al.  Practical Network Coding , 2003 .

[16]  Christina Fragouli,et al.  Algebraic Algorithms for Vector Network Coding , 2011, IEEE Transactions on Information Theory.

[17]  Shuhong Gao,et al.  Additive Fast Fourier Transforms Over Finite Fields , 2010, IEEE Transactions on Information Theory.

[18]  D. Karger,et al.  On Coding for Non-Multicast Networks ∗ , 2003 .

[19]  Michael Langberg,et al.  Network Coding: A Computational Perspective , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[20]  Kenneth Zeger,et al.  A class of non-linearly solvable networks , 2016, ISIT.

[21]  Raymond W. Yeung,et al.  Network coding gain of combination networks , 2004, Information Theory Workshop.

[22]  R. Koetter,et al.  An algebraic approach to network coding , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[23]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[24]  Xuemin Shen,et al.  A Lightweight Encryption Scheme for Network-Coded Mobile Ad Hoc Networks , 2014, IEEE Transactions on Parallel and Distributed Systems.

[25]  Xunrui Yin,et al.  On vector linear solvability of multicast networks , 2015, ICC.

[26]  Raymond W. Yeung,et al.  Information Theory and Network Coding , 2008 .

[27]  Alexandros G. Dimakis,et al.  Network Coding for Distributed Storage Systems , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[28]  Baochun Li,et al.  How Practical is Network Coding? , 2006, 200614th IEEE International Workshop on Quality of Service.

[29]  Zongpeng Li,et al.  Multicast Network Coding and Field Sizes , 2014, IEEE Transactions on Information Theory.

[30]  Peter Sanders,et al.  Polynomial time algorithms for multicast network code construction , 2005, IEEE Transactions on Information Theory.