Viscosity equations of pure fluids in an innovative extended corresponding states framework: II. Application to four fluids

Abstract This paper represents the second part of a work devoted to an innovative version of the historical extended corresponding states (ECS) technique for the development of viscosity equations on the whole ηTρ surface for individual fluids. In the first part [1] , the theoretical aspects of modelling the ECS transport properties modelling have been discussed, and the fundamental characteristics of the proposed method have been tested, using viscosity values generated from conventional dedicated viscosity equations. The very promising results suggest a move from generated to experimental data correlation to determine dedicated viscosity equations for a number of fluids for which conventional equations are available in literature. This is done in this second part, where the fluids studied are the alkane ethane and the haloalkane refrigerants R123, R134a and R152a. The absolute average deviations (AADs) obtained with primary data are, respectively, 1.04, 1.13, 0.92 and 0.71% with a significant improvement with respect to the conventional equations. Considering that the expected experimental accuracy for good viscosity data is generally in the range 1–2%, the obtained results seem to be very promising.

[1]  Robert C. Shair,et al.  Thermodynamic Properties of Halogenated Ethanes and Ethylenes , 1955 .

[2]  Y. Ishida.,et al.  Determination of Viscosities and of the Stokes-Millikan Law Constant by the Oil-Drop Method , 1923 .

[3]  K. E. Starling,et al.  Liquid, Gas, and Dense Fluid Viscosity of Ethane. , 1962 .

[4]  J. Kestin,et al.  The viscosity of five gaseous hydrocarbons , 1977 .

[5]  Lizhong Han,et al.  Viscosity of Saturated Liquid for 1,1,1,2-Tetrofluoroethane , 1995 .

[6]  Hiroshi Adzumi Studies on the Flow of Gaseous Mixtures through Capillaries. I The Viscosity of Binary Gaseous Mixtures , 1937 .

[7]  N. Shibasaki-Kitakawa,et al.  Viscosity of Gaseous HFC-134a (1,1,1,2-Tetrafluoroethane) Under High Pressures , 1998 .

[8]  J. Kestin,et al.  The viscosity and diffusion coefficients of the mixtures of four light hydrocarbon gases , 1978 .

[9]  E. Vogel,et al.  Gas-phase viscosity of the alternative refrigerant R134a at low densities , 1996 .

[10]  Yoshiaki Tanaka,et al.  Thermal conductivity and viscosity of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) , 1996 .

[11]  C. Yokoyama,et al.  Viscosities of gaseous R13B1, R142b, and R152a , 1987 .

[12]  C. J. Pings,et al.  Viscosity of xenon and ethane in the critical region , 1974 .

[13]  L. Piazza,et al.  A predictive density model in a corresponding states format. Application to pure and mixed refrigerants , 2003 .

[14]  A. Nagashima,et al.  Measurement of the viscosity of HCFC 123 in the temperature range 233–418 K and at pressures up to 20 MPa , 1992 .

[15]  Cornelia Küchenmeister,et al.  Reference Correlation of the Viscosity of Propane , 1998 .

[16]  Giancarlo Scalabrin,et al.  A corresponding states predictive model for the saturated liquid density of halogenated alkanes and of fluorinated propanes and ethers , 2000 .

[17]  F. Kurata,et al.  Liquid viscosities above the normal boiling point for methane, ethane, propane, and n‐butane , 1960 .

[18]  George Granger. Brown,et al.  Correlating Fluid Viscosity , 1943 .

[19]  B. Sage,et al.  Viscosity of Ethane at High Pressures. , 1963 .

[20]  J. Kestin,et al.  Reference values of the viscosity of twelve gases at 25°C , 1971 .

[21]  A. Leipertz,et al.  Dynamic viscosity measurements by photon correlation spectroscopy , 1995 .

[22]  R. Tillner-Roth,et al.  A fundamental equation of state for 1,1-difluoroethane (HFC-152a) , 1995 .

[23]  A. Nagashima,et al.  Measurement of the viscosity of HFC 134a in the temperature range 213–423 K and at pressures up to 30 MPa , 1992 .

[24]  H. Kubota,et al.  VISCOSITY OF BINARY GASEOUS MIXTURES OF FLUOROCARBONS , 1986 .

[25]  Daniel G. Friend,et al.  Thermophysical Properties of Ethane , 1991 .

[26]  O. Matar,et al.  Viscosity of the saturated liquid phase of six halogenated compounds and three mixtures , 1993 .

[27]  F. Mayinger,et al.  Viscosity of gaseous R123, R134a, and R142b , 1992 .

[28]  A. Kumagai,et al.  Viscosity of saturated liquid fluorocarbon refrigerants from 273 to 353 K , 1991 .

[29]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[30]  Marc J. Assael,et al.  Measurements of the viscosity of refrigerants in the vapor phase , 1997 .

[31]  W. Wakeham,et al.  Density and Viscosity Measurements of 1,1,1,2-Tetrafluoroethane (HFC-134a) from 199 K to 298 K and up to 100 MPa , 1996 .

[32]  H. Vogel Über die Viskosität einiger Gase und ihre Temperaturabhängigkeit bei tiefen Temperaturen , 1914 .

[33]  A. Laesecke,et al.  Measurements of the viscosities of saturated and compressed liquid 1,1,1,2-tetrafluoroethane (R134a), 2,2-dichloro-1,1,1-trifluoroethane (R123) and 1,1-dichloro-1-fluoroemane (R141b) , 1993 .

[34]  G. Matthews,et al.  Gas viscosities and intermolecular interactions of replacement refrigerants HCFC 123 (2,2-dichloro-1,1,1-trifluoroethane), HCFC 124 (2-chloro-1,1,1,2-tetrafluoroethane) and HFC 134a (1,1,1,2-tetrafluoroethane) , 1993 .

[35]  Jan V. Sengers,et al.  Transport properties of 1,1-difluoroethane (R152a) , 1996 .

[36]  Vera Kurková,et al.  Kolmogorov's theorem and multilayer neural networks , 1992, Neural Networks.

[37]  J. G. Roof,et al.  Viscosity of Nitrogen, Methane, Ethane, and Propane at Elevated Temperature and Pressure. , 1959 .

[38]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[39]  Mark O. McLinden,et al.  An International Standard Equation of State for the Thermodynamic Properties of Refrigerant 123 (2,2‐Dichloro‐1,1,1‐Trifluoroethane) , 1994 .

[40]  G. Matthews,et al.  Viscosities of gaseous argon-hydrogen mixtures , 1989 .

[41]  D. Morris,et al.  Viscosity Measurements of Ammonia, R32, and R134a. Vapor Buoyancy and Radial Acceleration in Capillary Viscometers , 1999 .

[42]  K. Stephan,et al.  Transport properties of 1,1,1,2-tetrafluoroethane (R134a) , 1993 .

[43]  J. Dymond,et al.  Measurements of the viscosity of R134a and R32 in the temperature range 270–340 K at pressures up to 20 MPa , 1994 .

[44]  Marc J. Assael,et al.  Measurements of the viscosity of R11, R12, R141b, and R152a in the temperature range 270–340 K at pressures up to 20 MPa , 1994 .

[45]  A. Rocco,et al.  Intermolecular Potentials of Argon, Methane, and Ethane , 1958 .

[46]  William A. Wakeham,et al.  Validation of an accurate vibrating-wire densimeter: Density and viscosity of liquids over wide ranges of temperature and pressure , 1996 .

[47]  A. M. Robinson,et al.  Transport properties of gaseous hydrocarbons , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[48]  J. D. Lambert,et al.  The viscosities of organic vapours , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[49]  C. Yokoyama,et al.  Viscosity of Gaseous HCFC-123 (2,2-Dichloro-1,1,1-Trifluoroethane) in the Temperature Range from 323.15 to 423.15 K and at Pressures up to 2 MPa , 2000 .

[50]  B. Schramm,et al.  Measurements of the Second Virial Coefficients of Some New Chlorofluorocarbons and of Their Binary Mixtures at Temperatures in the Range from 296 K to 475 K , 1992 .

[51]  Marc J. Assael,et al.  The transport properties of ethane. I. Viscosity , 1994 .

[52]  P. S. Gulik,et al.  Viscosity of saturated R152a measured with a vibrating wire viscometer , 1995 .

[53]  W. Wakeham,et al.  The viscosity of liquid R134a , 1993 .