Superconductor Electronics Fabrication Process with MoNx Kinetic Inductors and Self-Shunted Josephson Junctions

<?Pub Dtl?>Recent progress in superconductor electronics fabrication has enabled single-flux-quantum (SFQ) digital circuits with close to one million Josephson junctions (JJs) on <inline-formula><tex-math notation="LaTeX"> ${\text{1}}\hbox{-}{\text{cm}}^{2}$</tex-math></inline-formula> chips. Increasing the integration scale further is challenging because of the large area of SFQ logic cells, mainly determined by the area of resistively shunted Nb/AlO<italic><sub>x</sub></italic>–Al/Nb JJs and geometrical inductors utilizing multiple layers of Nb. To overcome these challenges, we are developing a fabrication process with self-shunted high-<inline-formula> <tex-math notation="LaTeX">$J_{{\rm{c}}}$</tex-math></inline-formula> JJs and compact thin-film MoN<italic><sub>x</sub> </italic> kinetic inductors instead of geometrical inductors. We present fabrication details and properties of <inline-formula><tex-math notation="LaTeX">${\text{MoN}}_{x}$</tex-math></inline-formula> films with a wide range of <inline-formula><tex-math notation="LaTeX">$T_{{\rm{c}}}$</tex-math></inline-formula>, including residual stress, electrical resistivity, critical current, and magnetic field penetration depth <inline-formula> <tex-math notation="LaTeX">$\lambda _{0}$</tex-math></inline-formula>. As kinetic inductors, we implemented Mo<sub>2 </sub>N films with <inline-formula><tex-math notation="LaTeX">$T_{{\rm{c}}}$</tex-math></inline-formula> about 8 K, <inline-formula><tex-math notation="LaTeX">$\lambda _{0}$</tex-math></inline-formula> about 0.51 μm, and inductance adjustable in the range from 2 to 8 pH/sq. We also present data on fabrication and electrical characterization of Nb-based self-shunted JJs with AlO<italic><sub>x</sub></italic> tunnel barriers and <inline-formula><tex-math notation="LaTeX">$J_{{\rm{c}}}= {\text{0.6}}\,{\text{mA}}{/}\mu{\text{m}}^{2}$</tex-math> </inline-formula>, and with 10-nm thick Si<sub>1−</sub><italic><sub>x</sub></italic>Nb<italic><sub>x</sub> </italic> barriers, with <italic>x</italic> from 0.03 to 0.15, fabricated on 200-mm wafers by co-sputtering. We demonstrate that the electron transport mechanism in Si<sub>1−</sub><italic><sub>x</sub></italic>Nb<italic><sub> x</sub></italic> barriers at <inline-formula><tex-math notation="LaTeX">$x< {{0.08}}$</tex-math></inline-formula> is inelastic resonant tunneling via chains of multiple localized states. At larger <italic>x</italic>, their Josephson characteristics are strongly dependent on <italic>x</italic> and residual stress in Nb electrodes, and in general are inferior to AlO<italic><sub>x</sub></italic> tunnel barriers.

[1]  I. O. Kulik,et al.  Properties of superconducting microbridges in the pure limit , 1977 .

[2]  W. H. Mallison,et al.  Niobium trilayer Josephson tunnel junctions with ultrahigh critical current densities , 1993 .

[3]  M. Gouker,et al.  Deep sub-micron stud-via technology for superconductor VLSI circuits , 2013, 1309.7505.

[4]  Naoki Takeuchi,et al.  Three-dimensional adiabatic quantum-flux-parametron fabricated using a double-active-layered niobium process , 2017 .

[5]  Michael Siegel,et al.  Dependence of magnetic penetration depth on the thickness of superconducting Nb thin films , 2005 .

[6]  K. Cheng Theory of Superconductivity , 1948, Nature.

[7]  Kazuyoshi Takagi,et al.  Nb 9-Layer Fabrication Process for Superconducting Large-Scale SFQ Circuits and Its Process Evaluation , 2014, IEICE Trans. Electron..

[8]  M. Kupriyanov,et al.  Nb/AlO/sub x//Al/AlO/sub x//Nb double-barrier junctions with high critical current densities: influence of barrier asymmetry , 2003 .

[9]  V. Semenov,et al.  Inductance of Circuit Structures for MIT LL Superconductor Electronics Fabrication Process With 8 Niobium Layers , 2014, IEEE Transactions on Applied Superconductivity.

[10]  Y. Kobayashi,et al.  Microwave measurement of temperature and current dependences of surface impedance for high-T/sub c/ superconductors , 1991 .

[11]  S. Sarwana,et al.  Zero Static Power Dissipation Biasing of RSFQ Circuits , 2011, IEEE Transactions on Applied Superconductivity.

[12]  B. Baek,et al.  High-Speed Nb/Nb–Si/Nb Josephson Junctions for Superconductive Digital Electronics , 2008, IEEE Transactions on Applied Superconductivity.

[13]  Y. Naveh,et al.  Universal distribution of transparencies in highly conductive Nb/AlO(x)/Nb junctions. , 2000, Physical review letters.

[14]  L. Benfatto,et al.  Penetration depth and tunneling studies in very thin epitaxial NbN films , 2009, 0911.4181.

[15]  Superconducting energy scales and anomalous dissipative conductivity in thin films of molybdenum nitride , 2016, 1607.05416.

[16]  Oates,et al.  Surface-impedance measurements of superconducting NbN films. , 1991, Physical review. B, Condensed matter.

[17]  M. Yu. Kupriyanov,et al.  Properties of planar Nb/α-Si/Nb Josephson junctions with various degrees of doping of the α-Si layer , 2012 .

[18]  B. Baek,et al.  Co-Sputtered Amorphous Nb$_{ x}$ Si$_{1 - { x}}$ Barriers for Josephson-Junction Circuits , 2006, IEEE Transactions on Applied Superconductivity.

[19]  I. O. Kulik,et al.  Josephson effect in superconducting bridges - Microscopic theory , 1978 .

[20]  S. Nagasawa,et al.  Run-to-Run Yield Evaluation of Improved Nb 9-layer Advanced Process using Single Flux Quantum Shift Register Chip with 68,990 Josephson Junctions , 2017 .

[21]  Alexandra L. Day,et al.  Developments toward a 250-nm, Fully Planarized Fabrication Process with Ten Superconducting Layers and Self-Shunted Josephson Junctions , 2017, 2017 16th International Superconductive Electronics Conference (ISEC).

[22]  Xu,et al.  Directed inelastic hopping of electrons through metal-insulator-metal tunnel junctions. , 1995, Physical review. B, Condensed matter.

[23]  I. O. Kulik,et al.  Contribution to the microscopic theory of the Josephson effect in superconducting bridges , 1975 .

[24]  V. Semenov,et al.  AC-Biased Shift Registers as Fabrication Process Benchmark Circuits and Flux Trapping Diagnostic Tool , 2016, IEEE Transactions on Applied Superconductivity.

[25]  Y. P. Lee,et al.  Nature of critical current and coherent phenomena in granular MoNx thin films , 2000 .

[26]  M. Gouker,et al.  Fabrication Process and Properties of Fully-Planarized Deep-Submicron Nb/Al– $\hbox{AlO}_{\rm x}\hbox{/Nb} $ Josephson Junctions for VLSI Circuits , 2014, IEEE Transactions on Applied Superconductivity.

[27]  G. Goltsman,et al.  Comparison of Hot Spot Formation in NbN and MoN Thin Superconducting Films After Photon Absorption , 2017, IEEE Transactions on Applied Superconductivity.

[28]  G. Koren,et al.  Microwave measurements of high Tc superconductors , 1996, Proceedings of 19th Convention of Electrical and Electronics Engineers in Israel.

[29]  S. K. Tolpygo Superconductor digital electronics: Scalability and energy efficiency issues (Review Article) , 2016, 1602.03546.

[30]  H. Alloul Introduction to Superconductivity , 2011 .

[31]  S. Benz,et al.  Amorphous Nb-Si Barrier Junctions for Voltage Standard and Digital Applications , 2009, IEEE Transactions on Applied Superconductivity.

[32]  J. Halbritter,et al.  rf Residual losses, surface impedance, and granularity in superconducting cuprates. , 1990 .

[33]  Vasili K. Semenov,et al.  New AC-Powered SFQ Digital Circuits , 2015, IEEE Transactions on Applied Superconductivity.

[34]  K. Likharev,et al.  Dynamics of Josephson Junctions and Circuits , 1986 .

[35]  Zhi-Yuan Shen,et al.  High-T/sub c/-superconductor-sapphire microwave resonator with extremely high Q-values up to 90 K , 1992 .

[36]  P. Febvre,et al.  Electrical parameters of niobium-based overdamped superconductor-normal metal-insulator-superconductor Josephson junctions for digital applications , 2010 .

[37]  M. A. Gouker,et al.  Properties of Unshunted and Resistively Shunted Nb/AlOx-Al/Nb Josephson Junctions With Critical Current Densities From 0.1 to 1 mA/μm2 , 2016, IEEE Transactions on Applied Superconductivity.

[38]  M. Gouker,et al.  Advanced Fabrication Processes for Superconducting Very Large-Scale Integrated Circuits , 2015, IEEE Transactions on Applied Superconductivity.

[39]  D. Amparo,et al.  20 ${\hbox{kA/cm}}^{2}$ Process Development for Superconducting Integrated Circuits With 80 GHz Clock Frequency , 2007, IEEE Transactions on Applied Superconductivity.

[40]  N. Leo,et al.  Nb/Al–AlOx–Nb superconducting heterostructures: A promising class of self-shunted Josephson junctions , 2010 .

[41]  V. K. Kaplunenko,et al.  Rapid single-flux quantum logic using π-shifters , 2003 .

[42]  H. Kroger,et al.  Niobium Josephson junctions with doped amorphous silicon barriers , 1979 .

[43]  J. Rowell,et al.  Fabrication of niobium titanium nitride thin films with high superconducting transition temperatures and short penetration lengths , 2005, IEEE Transactions on Applied Superconductivity.

[44]  David Olaya,et al.  Digital circuits using self-shunted Nb/NbxSi1-x/Nb Josephson junctions , 2010 .