Quantitation of malaria parasite-erythrocyte cell-cell interactions using optical tweezers.

[1]  L. Bannister,et al.  Studies on the structure and invasive behaviour of merozoites of Plasmodium knowlesi. , 1975, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[2]  R. Wilson,et al.  Separation of viable schizont-infected red cells of Plasmodium falciparum from human blood. , 1978, Annals of tropical medicine and parasitology.

[3]  J. Jensen Concentration from continuous culture of erythrocytes infected with trophozoites and schizonts of Plasmodium falciparum. , 1978, The American journal of tropical medicine and hygiene.

[4]  C. Lambros,et al.  Synchronization of Plasmodium falciparum erythrocytic stages in culture. , 1979, The Journal of parasitology.

[5]  F. Mcauliffe,et al.  Invasion of erythrocytes by malaria merozoites. , 1979, Progress in clinical and biological research.

[6]  L. Miller,et al.  Freeze-fracture study on the erythrocyte membrane during malarial parasite invasion , 1981, The Journal of cell biology.

[7]  Charles Kilo,et al.  Age-related changes in deformability of human erythrocytes. , 1985 .

[8]  N. Maeda,et al.  Cell age-dependent changes in deformability and calcium accumulation of human erythrocytes. , 1985, Biochimica et biophysica acta.

[9]  C. Kilo,et al.  Age-related changes in deformability of human erythrocytes. , 1985, Blood.

[10]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[11]  Ligand-receptor interactions , 1999, 0809.1926.

[12]  R. Simmons,et al.  Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. , 1999, Biophysical journal.

[13]  S. Hénon,et al.  A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. , 1999, Biophysical journal.

[14]  C. Chitnis,et al.  Plasmodium falciparum Field Isolates Commonly Use Erythrocyte Invasion Pathways That Are Independent of Sialic Acid Residues of Glycophorin A , 1999, Infection and Immunity.

[15]  T. Tiffert,et al.  Potent antimalarial activity of clotrimazole in in vitro cultures of Plasmodium falciparum. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  C. Lim,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[17]  Daniel T Chiu,et al.  A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Rayner,et al.  Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes , 2003, The EMBO journal.

[19]  Nicholas J White,et al.  Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology. , 2004, Acta tropica.

[20]  L. Bannister,et al.  Structure and development of the surface coat of erythrocytic merozoites of Plasmodium knowlesi , 2004, Cell and Tissue Research.

[21]  J. Zimmerberg,et al.  Membrane Transformation during Malaria Parasite Release from Human Red Blood Cells , 2005, Current Biology.

[22]  Chwee Teck Lim,et al.  Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. , 2005, Acta biomaterialia.

[23]  T. Tiffert,et al.  The hydration state of human red blood cells and their susceptibility to invasion by Plasmodium falciparum. , 2005, Blood.

[24]  Virgilio L Lew,et al.  Is invasion efficiency in malaria controlled by pre-invasion events? , 2007, Trends in parasitology.

[25]  Cameron V. Jennings,et al.  Molecular Analysis of Erythrocyte Invasion in Plasmodium falciparum Isolates from Senegal , 2007, Infection and Immunity.

[26]  Jurij Kotar,et al.  The nonlinear mechanical response of the red blood cell , 2007, Physical biology.

[27]  P. Gilson,et al.  Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites. , 2009, International journal for parasitology.

[28]  Michel Theron,et al.  An Adaptable Two-Color Flow Cytometric Assay to Quantitate the Invasion of Erythrocytes by Plasmodium falciparum Parasites , 2010, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[29]  C. Chitnis,et al.  Distinct External Signals Trigger Sequential Release of Apical Organelles during Erythrocyte Invasion by Malaria Parasites , 2010, PLoS pathogens.

[30]  Clemens F Kaminski,et al.  Quantitative imaging of human red blood cells infected with Plasmodium falciparum. , 2010, Biophysical journal.

[31]  G E Karniadakis,et al.  Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation , 2010, Proceedings of the National Academy of Sciences.

[32]  P. Gilson,et al.  Interactions with heparin-like molecules during erythrocyte invasion by Plasmodium falciparum merozoites. , 2010, Blood.

[33]  D. Conway,et al.  Erythrocyte invasion and merozoite ligand gene expression in severe and mild Plasmodium falciparum malaria. , 2010, The Journal of infectious diseases.

[34]  Subra Suresh,et al.  Biophysics of Malarial Parasite Exit from Infected Erythrocytes , 2011, PloS one.

[35]  P. Cicuta,et al.  Red blood cell dynamics: from spontaneous fluctuations to non-linear response , 2011 .

[36]  Dave Richard,et al.  Super resolution dissection of coordinated events behind malaria parasite invasion of the human erythrocyte , 2014 .

[37]  Jurij Kotar,et al.  Noise and synchronization of a single active colloid. , 2011, Physical review letters.

[38]  Dominic P. Kwiatkowski,et al.  BASIGIN is a receptor essential for erythrocyte invasion by Plasmodium falciparum , 2011, Nature.

[39]  M. Póvoa,et al.  Plasmodium falciparum Field Isolates from South America Use an Atypical Red Blood Cell Invasion Pathway Associated with Invasion Ligand Polymorphisms , 2012, PloS one.

[40]  F. Frischknecht,et al.  Direct manipulation of malaria parasites with optical tweezers reveals distinct functions of Plasmodium surface proteins. , 2012, ACS nano.

[41]  Drew Berry,et al.  The cellular and molecular basis for malaria parasite invasion of the human red blood cell , 2012, The Journal of cell biology.

[42]  Alex J Crick,et al.  An automated live imaging platform for studying merozoite egress-invasion in malaria cultures. , 2013, Biophysical journal.

[43]  M. Wahlgren,et al.  Proteomic analysis of Plasmodium falciparum schizonts reveals heparin-binding merozoite proteins. , 2013, Journal of proteome research.