An Immune Self-adaptive Differential Evolution Algorithm with Application to Estimate Kinetic Parameters for Homogeneous Mercury Oxidation

A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, need immune self-adaptive differential evolution (ISDE), is proposed to improve the performance of the DE algorithm. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization; problems an improve the performance of ISDE by the control parameters' self-adaptation. The performance of the proposed method is studied with the use of nine benchmark problems and compared with original DE algorithm and other well-known self-adaptive DE algorithms. The experiments conducted show that the ISDE clearly outperforms the other DE algorithms in all benchmark functions. Furthermore, ISDE is applied to develop the kinetic model for homogeneous mercury (Hg) oxidation m flue gas, and satisfactory results are obtained.

[1]  Harvey G. Stenger,et al.  Effects of H2O, SO2, and NO on Homogeneous Hg Oxidation by Cl2 , 2006 .

[2]  Ling Wang,et al.  An effective co-evolutionary differential evolution for constrained optimization , 2007, Appl. Math. Comput..

[3]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[4]  Youxian Sun,et al.  An Improved Differential Evolution for Optimization of Chemical Process , 2008 .

[5]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[6]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[7]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[8]  Sandra Paterlini,et al.  Using differential evolution to improve the accuracy of bank rating systems , 2007, Comput. Stat. Data Anal..

[9]  H. Abbass The self-adaptive Pareto differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[10]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[11]  Harvey G. Stenger,et al.  Comparing and interpreting laboratory results of Hg oxidation by a chlorine species , 2007 .

[12]  William H. Press,et al.  Numerical recipes in C , 2002 .

[13]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[14]  F. Aluffi-Pentini,et al.  Global optimization and stochastic differential equations , 1985 .

[15]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[16]  Janez Brest,et al.  Performance comparison of self-adaptive and adaptive differential evolution algorithms , 2007, Soft Comput..

[17]  Ling Wang,et al.  An effective co-evolutionary particle swarm optimization for constrained engineering design problems , 2007, Eng. Appl. Artif. Intell..

[18]  Amin Nobakhti,et al.  A simple self-adaptive Differential Evolution algorithm with application on the ALSTOM gasifier , 2008, Appl. Soft Comput..

[19]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[20]  Alan S. Perelson,et al.  The immune system, adaptation, and machine learning , 1986 .

[21]  B. Babu,et al.  Differential evolution for multi-objective optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[22]  Gary B. Fogel,et al.  Noisy optimization problems - a particular challenge for differential evolution? , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[23]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[24]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[25]  Hans-Michael Voigt,et al.  Soft Genetic Operators in Evolutionary Algorithms , 1995, Evolution and Biocomputation.

[26]  S. Niksa,et al.  Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems. , 2001, Environmental science & technology.

[27]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[28]  Andries Petrus Engelbrecht,et al.  Self-adaptive Differential Evolution , 2005, CIS.

[29]  Licheng Jiao,et al.  A novel genetic algorithm based on immunity , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[30]  Yanbin Yuan,et al.  An enhanced differential evolution algorithm for daily optimal hydro generation scheduling , 2008, Comput. Math. Appl..

[31]  Tianlong Gu,et al.  A Novel Immunity-Growth Genetic Algorithm for Traveling Salesman Problem , 2007, Third International Conference on Natural Computation (ICNC 2007).

[32]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[33]  Andries Petrus Engelbrecht,et al.  Empirical analysis of self-adaptive differential evolution , 2007, Eur. J. Oper. Res..

[34]  Harvey G. Stenger,et al.  Development of a predictive kinetic model for homogeneous Hg oxidation data , 2007, Math. Comput. Model..