X-ray photoelectron diffraction study of an anatase thin film: TiO2(001)
暂无分享,去创建一个
Gregory S. Herman | T. T. Tran | G. Herman | Jürg Osterwalder | Y. Gao | J. Osterwalder | Y. Gao | T. Tran
[1] Richter,et al. Characterization of Cd1-yZnyTe(111) and Hg1-xCdxTe(111) real surfaces by x-ray photoelectron diffraction. , 1991, Physical review. B, Condensed matter.
[2] D. Cromer,et al. The Structures of Anatase and Rutile , 1955 .
[3] C. Peden,et al. Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites , 1998 .
[4] Helmuth Berger,et al. Infrared reflectivity and lattice fundamentals in anatase TiO 2 s , 1997 .
[5] O. Chauvet,et al. Magnetic properties of the anatase phase of TiO2 , 1995 .
[6] H. Poelman,et al. Observation of surface phonons on the (001) and (100) surfaces of anatase minerals , 1991 .
[7] J. S. Lees,et al. A structural investigation of titanium dioxide photocatalysts , 1991 .
[8] Hardman,et al. Valence-band structure of TiO2 along the Gamma - Delta -X and Gamma - Sigma -M directions. , 1994, Physical review. B, Condensed matter.
[9] Alfonso Franciosi,et al. Ultrahigh vacuum metalorganic chemical vapor deposition growth and in situ characterization of epitaxial TiO2 films , 1993 .
[10] Veal,et al. Final-state screening and chemical shifts in photoelectron spectroscopy. , 1985, Physical review. B, Condensed matter.
[11] J. Rehr,et al. Ab initio curved-wave x-ray-absorption fine structure. , 1991, Physical review. B, Condensed matter.
[12] A. Fujishima,et al. Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.
[13] M. Bowker,et al. TWO (1 X 2) RECONSTRUCTIONS OF TIO2(110) : SURFACE REARRANGEMENT AND REACTIVITY STUDIED USING ELEVATED TEMPERATURE SCANNING TUNNELING MICROSCOPY , 1999 .
[14] M. Fujisawa,et al. UV reflection spectra of anatase TiO2 , 1996 .
[15] Annabella Selloni,et al. Structure and Energetics of Water Adsorbed at TiO2 Anatase (101) and (001) Surfaces , 1998 .
[16] M. Kuhn,et al. Intrinsic defects on a TiO2(110)(1×1) surface and their reaction with oxygen: a scanning tunneling microscopy study , 1998 .
[17] F. Lévy,et al. Growth and Raman spectroscopic characterization of TiO2 anatase single crystals , 1993 .
[18] In-Tae Kim,et al. Anatase-to-rutile transition of titania thin films prepared by MOCVD , 1997 .
[19] R. T. Yang,et al. Selective Catalytic Reduction of NO with NH3 on SO−24/TiO2 Superacid Catalyst , 1993 .
[20] D. Friedman,et al. Application of a novel multiple scattering approach to photoelectron diffraction and Auger electron diffraction , 1991 .
[21] Francis Levy,et al. Photoluminescence in TiO2 anatase single crystals , 1993 .
[22] M. A. Henderson. The influence of oxide surface structure on adsorbate chemistry : desorption of water from the smooth, the microfaceted and the ion sputtered surfaces of TiO2(100) , 1994 .
[23] G. Margaritondo,et al. Electronic-Structure of Anatase Tio2 Oxide , 1994 .
[24] Ladislav Kavan,et al. ELECTROCHEMICAL AND PHOTOELECTROCHEMICAL INVESTIGATION OF SINGLE-CRYSTAL ANATASE , 1996 .
[25] D. Saldin,et al. The study of MgO(001) surfaces by photoelectron diffraction , 1994 .
[26] G. Jellison,et al. Measurement of the optical functions of uniaxial materials by two-modulator generalized ellipsometry: rutile (TiO(2)). , 1997, Optics letters.
[27] J. Augustynski. The role of the surface intermediates in the photoelectrochemical behaviour of anatase and rutile TiO2 , 1993 .
[28] H. Onishi,et al. Adsorption of CH3OH, HCOOH and SO2 on TiO2(110) and stepped TiO2(441) surfaces , 1988 .
[29] Charles S. Fadley,et al. Angle-resolved x-ray photoelectron spectroscopy , 1984 .
[30] S. Steinemann,et al. Clean and hydroxylated rutile TiO2(110) surfaces studied by X-ray photoelectron spectroscopy , 1996 .
[31] G. Sawatzky,et al. EXCITON SATELLITES IN PHOTOELECTRON-SPECTRA , 1984 .
[32] I. Cocks,et al. ESDIAD studies of the structure of TiO2(110)(1 × 1) and (1 × 2) surfaces and interfaces in conjunction with LEED and STM , 1997 .
[33] J. Yates,et al. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .
[34] J. T. Ranney,et al. The Surface Science of Metal Oxides , 1995 .
[35] G. Somorjai,et al. Low energy electron diffraction and electron spectroscopy studies of the clean (110) and (100) titanium dioxide (rutile) crystal surfaces , 1977 .
[36] E. Wetli,et al. A photoelectron spectrometer for k-space mapping above the Fermi level , 1997 .
[37] K. Schierbaum,et al. THE VALENCE-BAND ELECTRONIC STRUCTURE OF CLEAN AND PT-COVERED TIO2(110) SURFACES STUDIED WITH PHOTOEMISSION SPECTROSCOPY , 1997 .
[38] J. Tanaka,et al. Anatase-Type TiO2 Thin Films Produced by Lattice Deformation , 1997 .
[39] T. Madey,et al. TITANIUM AND REDUCED TITANIA OVERLAYERS ON TITANIUM DIOXIDE (110) , 1995 .
[40] F. Lévy,et al. Optical properties of anatase (TiO2) , 1994 .
[41] D. Friedman,et al. Final-state effects in photoelectron diffraction , 1990 .
[42] S. Chambers,et al. Strongly Z-dependent Auger and photoelectron diffraction in MgO(001) , 1994 .
[43] Optical properties of single-crystal anatase TiO2 , 1997 .
[44] Yagi,et al. Electronic conduction above 4 K of slightly reduced oxygen-deficient rutile TiO2-x. , 1996, Physical review. B, Condensed matter.
[45] C. Peden,et al. Chemisorption geometry of formate on Ti2(110) by photoelectron diffraction , 1997 .
[46] S. Chambers. Epitaxial film crystallography by high-energy Auger and X-ray photoelectron diffraction , 1991 .
[47] S. Kurita,et al. Excitonic state in anatase TiO2 single crystal , 1997 .
[48] Min Huang,et al. Microstructural Characterization of a Fumed Titanium Dioxide Photocatalyst , 1995 .
[49] S. C. Parker,et al. Atomistic simulation of the surface structure of theTiO2 polymorphs rutileand anatase , 1997 .