X-ray photoelectron diffraction study of an anatase thin film: TiO2(001)

Abstract An anatase thin film, TiO 2 (001), has been grown by metal–organic chemical vapor deposition on a SrTiO 3 (001) substrate. The electronic and structural properties of the anatase thin film were investigated by X-ray photoelectron spectroscopy, low energy electron diffraction (LEED), and X-ray photoelectron diffraction (XPD). Comparisons of the core-level binding energies for O 1s and Ti 2p 3/2 photoelectrons was made between anatase and rutile, and were found to be identical for both polymorphs. Structurally, the surface gave a (1×1) LEED pattern with a high background, indicating regions of good long-range order. Comparison between experimental XPD data and single-scattering cluster calculations indicate that there is good agreement with an anatase crystal termination, and poor agreement with a rutile crystal termination. Furthermore, good agreement was found at low takeoff angles for experiment and calculations suggesting that the thin film has good short-range order at the surface. This study indicates that anatase is stable and does not undergo a transformation to the rutile polymorph when exposed to atmosphere after film growth or after heating to low temperatures in ultrahigh vacuum.

[1]  Richter,et al.  Characterization of Cd1-yZnyTe(111) and Hg1-xCdxTe(111) real surfaces by x-ray photoelectron diffraction. , 1991, Physical review. B, Condensed matter.

[2]  D. Cromer,et al.  The Structures of Anatase and Rutile , 1955 .

[3]  C. Peden,et al.  Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites , 1998 .

[4]  Helmuth Berger,et al.  Infrared reflectivity and lattice fundamentals in anatase TiO 2 s , 1997 .

[5]  O. Chauvet,et al.  Magnetic properties of the anatase phase of TiO2 , 1995 .

[6]  H. Poelman,et al.  Observation of surface phonons on the (001) and (100) surfaces of anatase minerals , 1991 .

[7]  J. S. Lees,et al.  A structural investigation of titanium dioxide photocatalysts , 1991 .

[8]  Hardman,et al.  Valence-band structure of TiO2 along the Gamma - Delta -X and Gamma - Sigma -M directions. , 1994, Physical review. B, Condensed matter.

[9]  Alfonso Franciosi,et al.  Ultrahigh vacuum metalorganic chemical vapor deposition growth and in situ characterization of epitaxial TiO2 films , 1993 .

[10]  Veal,et al.  Final-state screening and chemical shifts in photoelectron spectroscopy. , 1985, Physical review. B, Condensed matter.

[11]  J. Rehr,et al.  Ab initio curved-wave x-ray-absorption fine structure. , 1991, Physical review. B, Condensed matter.

[12]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[13]  M. Bowker,et al.  TWO (1 X 2) RECONSTRUCTIONS OF TIO2(110) : SURFACE REARRANGEMENT AND REACTIVITY STUDIED USING ELEVATED TEMPERATURE SCANNING TUNNELING MICROSCOPY , 1999 .

[14]  M. Fujisawa,et al.  UV reflection spectra of anatase TiO2 , 1996 .

[15]  Annabella Selloni,et al.  Structure and Energetics of Water Adsorbed at TiO2 Anatase (101) and (001) Surfaces , 1998 .

[16]  M. Kuhn,et al.  Intrinsic defects on a TiO2(110)(1×1) surface and their reaction with oxygen: a scanning tunneling microscopy study , 1998 .

[17]  F. Lévy,et al.  Growth and Raman spectroscopic characterization of TiO2 anatase single crystals , 1993 .

[18]  In-Tae Kim,et al.  Anatase-to-rutile transition of titania thin films prepared by MOCVD , 1997 .

[19]  R. T. Yang,et al.  Selective Catalytic Reduction of NO with NH3 on SO−24/TiO2 Superacid Catalyst , 1993 .

[20]  D. Friedman,et al.  Application of a novel multiple scattering approach to photoelectron diffraction and Auger electron diffraction , 1991 .

[21]  Francis Levy,et al.  Photoluminescence in TiO2 anatase single crystals , 1993 .

[22]  M. A. Henderson The influence of oxide surface structure on adsorbate chemistry : desorption of water from the smooth, the microfaceted and the ion sputtered surfaces of TiO2(100) , 1994 .

[23]  G. Margaritondo,et al.  Electronic-Structure of Anatase Tio2 Oxide , 1994 .

[24]  Ladislav Kavan,et al.  ELECTROCHEMICAL AND PHOTOELECTROCHEMICAL INVESTIGATION OF SINGLE-CRYSTAL ANATASE , 1996 .

[25]  D. Saldin,et al.  The study of MgO(001) surfaces by photoelectron diffraction , 1994 .

[26]  G. Jellison,et al.  Measurement of the optical functions of uniaxial materials by two-modulator generalized ellipsometry: rutile (TiO(2)). , 1997, Optics letters.

[27]  J. Augustynski The role of the surface intermediates in the photoelectrochemical behaviour of anatase and rutile TiO2 , 1993 .

[28]  H. Onishi,et al.  Adsorption of CH3OH, HCOOH and SO2 on TiO2(110) and stepped TiO2(441) surfaces , 1988 .

[29]  Charles S. Fadley,et al.  Angle-resolved x-ray photoelectron spectroscopy , 1984 .

[30]  S. Steinemann,et al.  Clean and hydroxylated rutile TiO2(110) surfaces studied by X-ray photoelectron spectroscopy , 1996 .

[31]  G. Sawatzky,et al.  EXCITON SATELLITES IN PHOTOELECTRON-SPECTRA , 1984 .

[32]  I. Cocks,et al.  ESDIAD studies of the structure of TiO2(110)(1 × 1) and (1 × 2) surfaces and interfaces in conjunction with LEED and STM , 1997 .

[33]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[34]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[35]  G. Somorjai,et al.  Low energy electron diffraction and electron spectroscopy studies of the clean (110) and (100) titanium dioxide (rutile) crystal surfaces , 1977 .

[36]  E. Wetli,et al.  A photoelectron spectrometer for k-space mapping above the Fermi level , 1997 .

[37]  K. Schierbaum,et al.  THE VALENCE-BAND ELECTRONIC STRUCTURE OF CLEAN AND PT-COVERED TIO2(110) SURFACES STUDIED WITH PHOTOEMISSION SPECTROSCOPY , 1997 .

[38]  J. Tanaka,et al.  Anatase-Type TiO2 Thin Films Produced by Lattice Deformation , 1997 .

[39]  T. Madey,et al.  TITANIUM AND REDUCED TITANIA OVERLAYERS ON TITANIUM DIOXIDE (110) , 1995 .

[40]  F. Lévy,et al.  Optical properties of anatase (TiO2) , 1994 .

[41]  D. Friedman,et al.  Final-state effects in photoelectron diffraction , 1990 .

[42]  S. Chambers,et al.  Strongly Z-dependent Auger and photoelectron diffraction in MgO(001) , 1994 .

[43]  Optical properties of single-crystal anatase TiO2 , 1997 .

[44]  Yagi,et al.  Electronic conduction above 4 K of slightly reduced oxygen-deficient rutile TiO2-x. , 1996, Physical review. B, Condensed matter.

[45]  C. Peden,et al.  Chemisorption geometry of formate on Ti2(110) by photoelectron diffraction , 1997 .

[46]  S. Chambers Epitaxial film crystallography by high-energy Auger and X-ray photoelectron diffraction , 1991 .

[47]  S. Kurita,et al.  Excitonic state in anatase TiO2 single crystal , 1997 .

[48]  Min Huang,et al.  Microstructural Characterization of a Fumed Titanium Dioxide Photocatalyst , 1995 .

[49]  S. C. Parker,et al.  Atomistic simulation of the surface structure of theTiO2 polymorphs rutileand anatase , 1997 .