Length-bounded cuts and flows

For a given number <i>L</i>, an <i>L</i>-length-bounded edge-cut (node-cut, respectively) in a graph <i>G</i> with source <i>s</i> and sink <i>t</i> is a set <i>C</i> of edges (nodes, respectively) such that no <i>s</i>-<i>t</i>-path of length at most <i>L</i> remains in the graph after removing the edges (nodes, respectively) in <i>C</i>. An <i>L</i>-length-bounded flow is a flow that can be decomposed into flow paths of length at most <i>L</i>. In contrast to classical flow theory, we describe instances for which the minimum <i>L</i>-length-bounded edge-cut (node-cut, respectively) is Θ(<i>n</i><sup>2/3</sup>)-times (Θ(&sqrt;<i>n</i>)-times, respectively) larger than the maximum <i>L</i>-length-bounded flow, where <i>n</i> denotes the number of nodes; this is the worst case. We show that the minimum length-bounded cut problem is <i>NP</i>-hard to approximate within a factor of 1.1377 for <i>L</i>≥ 5 in the case of node-cuts and for <i>L</i>≥ 4 in the case of edge-cuts. We also describe algorithms with approximation ratio <i>O</i>(min{<i>L</i>,<i>n/L</i>}) ⊆ <i>O</i>&sqrt;<i>n</i> in the node case and <i>O</i>(min {<i>L</i>,<i>n</i><sup>2</sup>/<i>L</i><sup>2</sup>,&sqrt;<i>m</i>} ⊆ <i>O</i><sup>2/3</sup> in the edge case, where <i>m</i> denotes the number of edges. Concerning <i>L</i>-length-bounded flows, we show that in graphs with unit-capacities and general edge lengths it is <i>NP</i>-complete to decide whether there is a fractional length-bounded flow of a given value. We analyze the structure of optimal solutions and present further complexity results.

[1]  Martin Skutella,et al.  The Quickest Multicommodity Flow Problem , 2002, IPCO.

[2]  Geoffrey Exoo On line disjoint paths of bounded length , 1983, Discret. Math..

[3]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[4]  D.Frank Hsu,et al.  On Container Width and Length in Graphs, Groups,and Networks--Dedicated to Professor Paul Erdös on the occasion of his 80th birthday-- , 1994 .

[5]  D. R. Fulkerson,et al.  On the Max Flow Min Cut Theorem of Networks. , 1955 .

[6]  Alon Itai,et al.  The complexity of finding maximum disjoint paths with length constraints , 1982, Networks.

[7]  Sanjeev Khanna,et al.  Edge disjoint paths revisited , 2003, SODA '03.

[8]  José Coelho de Pina,et al.  Length-bounded disjoint paths in planar graphs , 2002, Discret. Appl. Math..

[9]  Peter Brucker,et al.  Scheduling Algorithms , 1995 .

[10]  Venkatesan Guruswami,et al.  Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related problems , 1999, STOC '99.

[11]  Thomas Erlebach,et al.  Length-Bounded Cuts and Flows , 2006, ICALP.

[12]  K. Menger Zur allgemeinen Kurventheorie , 1927 .

[13]  V. Rich Personal communication , 1989, Nature.

[14]  Jon M. Kleinberg,et al.  Approximation algorithms for disjoint paths problems , 1996 .

[15]  Yehoshua Perl,et al.  Heuristics for finding a maximum number of disjoint bounded paths , 1984, Networks.

[16]  Christian Scheideler,et al.  Improved bounds for the unsplittable flow problem , 2002, SODA '02.

[17]  Ali Ridha Mahjoub,et al.  Max Flow and Min Cut with bounded-length paths: complexity, algorithms, and approximation , 2010, Math. Program..

[18]  Geoffrey Exoo,et al.  A counterexample to a conjecture on paths of bounded length , 1982, J. Graph Theory.

[19]  Karsten Weihe,et al.  A Linear-Time Algorithm for Edge-Disjoint Paths in Planar Graphs , 1993, ESA.

[20]  Prabhakar Raghavan,et al.  Randomized rounding: A technique for provably good algorithms and algorithmic proofs , 1985, Comb..

[21]  S. Safra,et al.  On the hardness of approximating minimum vertex cover , 2005 .

[22]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[23]  Sunil Mathew,et al.  A generalization of Menger's Theorem , 2011, Appl. Math. Lett..

[24]  José R. Correa,et al.  Fast, Fair, and Efficient Flows in Networks , 2007, Oper. Res..

[25]  W. B. Ameur Constrained length connectivity and survivable networks , 2000 .

[26]  Karsten Weihe,et al.  A linear-time algorithm for edge-disjoint paths in planar graphs , 1995, Comb..

[27]  L. Lovász,et al.  Mengerian theorems for paths of bounded length , 1978 .

[28]  Peter Elias,et al.  A note on the maximum flow through a network , 1956, IRE Trans. Inf. Theory.

[29]  Eric V. Denardo,et al.  Flows in Networks , 2011 .

[30]  Zsolt Tuza,et al.  Menger-type theorems with restrictions on path lengths , 1993, Discret. Math..

[31]  Andreas Bley,et al.  On the complexity of vertex-disjoint length-restricted path problems , 2004, computational complexity.

[32]  Walid Ben-Ameur,et al.  Constrained length connectivity and survivable networks , 2000, Networks.

[33]  Ulrik Brandes,et al.  Edge-Disjoint Paths in Planar Graphs with Short Total Length , 1996 .

[34]  Zvi Galil,et al.  Short length versions of Menger's theorem , 1995, STOC '95.

[35]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[36]  Robert E. Tarjan,et al.  Network Flow and Testing Graph Connectivity , 1975, SIAM J. Comput..

[37]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[38]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .