Bias and Social Aspects in Search and Recommendation: First International Workshop, BIAS 2020, Lisbon, Portugal, April 14, Proceedings

Several recent works have highlighted how search and recommender systems exhibit bias along different dimensions. Counteracting this bias and bringing a certain amount of fairness in search is crucial to not only creating a more balanced environment that considers relevance and diversity but also providing a more sustainable way forward for both content consumers and content producers. This short paper examines some of the recent works to define relevance, diversity, and related concepts. Then, it focuses on explaining the emerging concept of fairness in various recommendation settings. In doing so, this paper presents comparisons and highlights contracts among various measures, and gaps in our conceptual and evaluative frameworks.

[1]  R. L. Thorndike Who belongs in the family? , 1953 .

[2]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[3]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[4]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[5]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[6]  W. Martyna,et al.  What Does ‘He’ Mean?Use of the Generic Masculine , 1978 .

[7]  N. Freedman,et al.  The language of depression. , 1981, Bulletin of the Menninger Clinic.

[8]  T. Oxman,et al.  The language of paranoia. , 1982, The American journal of psychiatry.

[9]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  Ross N. Williams,et al.  An extremely fast Ziv-Lempel data compression algorithm , 1991, [1991] Proceedings. Data Compression Conference.

[12]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[13]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[14]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[15]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[16]  S. Floyd,et al.  Adaptive Web , 1997 .

[17]  Ah-Hwee Tan,et al.  Learning user profiles for personalized information dissemination , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[18]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[19]  Jorge L. Ramírez Alfonsín On Variations of the Subset Sum Problem , 1998, Discret. Appl. Math..

[20]  Ayhan Demiriz,et al.  Semi-Supervised Support Vector Machines , 1998, NIPS.

[21]  Michael J. Pazzani,et al.  A hybrid user model for news story classification , 1999 .

[22]  L. Bergroth,et al.  A survey of longest common subsequence algorithms , 2000, Proceedings Seventh International Symposium on String Processing and Information Retrieval. SPIRE 2000.

[23]  Hans Kellerer,et al.  Approximation algorithms for knapsack problems with cardinality constraints , 2000, Eur. J. Oper. Res..

[24]  Yiming Yang,et al.  A study of thresholding strategies for text categorization , 2001, SIGIR '01.

[25]  Joshua Goodman,et al.  Classes for fast maximum entropy training , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[26]  Dieter Fensel,et al.  Product Data Integration in B2B E-Commerce , 2001, IEEE Intell. Syst..

[27]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[28]  R. Sigley,et al.  Looking at girls in Corpora of English , 2002 .

[29]  Ben J. A. Kröse,et al.  Efficient Greedy Learning of Gaussian Mixture Models , 2003, Neural Computation.

[30]  William W. Cohen,et al.  Beyond independent relevance: methods and evaluation metrics for subtopic retrieval , 2003, SIGIR.

[31]  Pradeep Ravikumar,et al.  A Comparison of String Distance Metrics for Name-Matching Tasks , 2003, IIWeb.

[32]  Liliana Ardissono,et al.  Intrigue: Personalized recommendation of tourist attractions for desktop and hand held devices , 2003, Appl. Artif. Intell..

[33]  Padhraic Smyth,et al.  Algorithms for estimating relative importance in networks , 2003, KDD '03.

[34]  J. Pennebaker,et al.  Psychological aspects of natural language. use: our words, our selves. , 2003, Annual review of psychology.

[35]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[36]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[37]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[38]  Susan T. Dumais,et al.  Newsjunkie: providing personalized newsfeeds via analysis of information novelty , 2004, WWW '04.

[39]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Dina Goren-Bar,et al.  FIT-recommend ing TV programs to family members , 2004, Comput. Graph..

[41]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[42]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[43]  K. Frith,et al.  The Construction of Beauty: A Cross‐Cultural Analysis of Women's Magazine Advertising , 2005 .

[44]  R. Traub Classical Test Theory in Historical Perspective , 2005 .

[45]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[46]  Paola Cappanera,et al.  A Local-Search-Based Heuristic for the Demand-Constrained Multidimensional Knapsack Problem , 2001, INFORMS J. Comput..

[47]  Yoshua Bengio,et al.  Hierarchical Probabilistic Neural Network Language Model , 2005, AISTATS.

[48]  Nathaniel Good,et al.  Naïve filterbots for robust cold-start recommendations , 2006, KDD '06.

[49]  Xingshe Zhou,et al.  TV Program Recommendation for Multiple Viewers Based on user Profile Merging , 2006, User Modeling and User-Adapted Interaction.

[50]  Emir Kamenica,et al.  Gender Differences in Mate Selection: Evidence From a Speed Dating Experiment , 2006 .

[51]  M. Newman,et al.  Vertex similarity in networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[53]  A. Barabasi,et al.  Dynamics of information access on the web. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Peter Brusilovsky,et al.  Open user profiles for adaptive news systems: help or harm? , 2007, WWW '07.

[55]  Michael J. Pazzani,et al.  Content-Based Recommendation Systems , 2007, The Adaptive Web.

[56]  Ji-Rong Wen,et al.  WWW 2007 / Track: Search Session: Personalization A Largescale Evaluation and Analysis of Personalized Search Strategies ABSTRACT , 2022 .

[57]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[58]  Abhinandan Das,et al.  Google news personalization: scalable online collaborative filtering , 2007, WWW '07.

[59]  Barry Smyth,et al.  Recommendation to Groups , 2007, The Adaptive Web.

[60]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[61]  Paul-Alexandru Chirita,et al.  Personalized query expansion for the web , 2007, SIGIR.

[62]  Charles L. A. Clarke,et al.  Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.

[63]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[64]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[65]  Michael Pearce,et al.  Investigating the collocational behaviour ofmanandwomanin the BNC using Sketch Engine1 , 2008 .

[66]  Efraim Turban,et al.  Groups Formation and Operations in the Web 2.0 Environment and Social Networks , 2008 .

[67]  Yehuda Koren,et al.  Factorization meets the neighborhood: a multifaceted collaborative filtering model , 2008, KDD.

[68]  Emir Kamenica,et al.  Racial Preferences in Dating , 2008 .

[69]  Sreenivas Gollapudi,et al.  Diversifying search results , 2009, WSDM '09.

[70]  Taghi M. Khoshgoftaar,et al.  A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..

[71]  Karl Pearson F.R.S. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling , 2009 .

[72]  Wei Chu,et al.  Personalized recommendation on dynamic content using predictive bilinear models , 2009, WWW '09.

[73]  Roger Guimerà,et al.  Missing and spurious interactions and the reconstruction of complex networks , 2009, Proceedings of the National Academy of Sciences.

[74]  Carmen Rosa Caldas-Coulthard,et al.  ‘Curvy, hunky, kinky’: Using corpora as tools for critical analysis , 2010 .

[75]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[76]  J. Pennebaker,et al.  The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods , 2010 .

[77]  Ludovico Boratto,et al.  Groups Identification and Individual Recommendations in Group Recommendation Algorithms , 2010, PRSAT@RecSys.

[78]  Brian J. Taylor,et al.  Causal discovery in social media using quasi-experimental designs , 2010, SOMA '10.

[79]  Andreas Dengel,et al.  Implementation of an Intelligent Product Recommender System in an e-Store , 2010, AMT.

[80]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[81]  Junjie Wu,et al.  Weak ties: subtle role of information diffusion in online social networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  Jesús Bobadilla,et al.  A new collaborative filtering metric that improves the behavior of recommender systems , 2010, Knowl. Based Syst..

[83]  Michael S. Bernstein,et al.  Short and tweet: experiments on recommending content from information streams , 2010, CHI.

[84]  Nuria Oliver,et al.  Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering , 2010, RecSys '10.

[85]  Jiahui Liu,et al.  Personalized news recommendation based on click behavior , 2010, IUI '10.

[86]  Roberto Turrin,et al.  Performance of recommender algorithms on top-n recommendation tasks , 2010, RecSys '10.

[87]  Gülşen Musayeva Vefali,et al.  The coordinate structures in a corpus of New Age talks: “man and woman”/“woman and man” , 2010 .

[88]  Hakan Ferhatosmanoglu,et al.  Short text classification in twitter to improve information filtering , 2010, SIGIR.

[89]  John Hannon,et al.  Recommending twitter users to follow using content and collaborative filtering approaches , 2010, RecSys '10.

[90]  Elizabeth M. Daly,et al.  The network effects of recommending social connections , 2010, RecSys '10.

[91]  Wei Chu,et al.  A contextual-bandit approach to personalized news article recommendation , 2010, WWW '10.

[92]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[93]  Nitesh V. Chawla,et al.  New perspectives and methods in link prediction , 2010, KDD.

[94]  Shunzhi Zhu,et al.  Personalized News Recommendation: A Review and an Experimental Investigation , 2011, Journal of Computer Science and Technology.

[95]  Paolo Rosso,et al.  User Profile Construction in the TWIN Personality-based Recommender System , 2011 .

[96]  Cong Yu,et al.  MRI: Meaningful Interpretations of Collaborative Ratings , 2011, Proc. VLDB Endow..

[97]  Bingjie Yan,et al.  Collaborative filtering recommendation algorithm based on shift of users' preferences , 2011, 2011 International Conference on Business Management and Electronic Information.

[98]  Ludovico Boratto,et al.  State-of-the-Art in Group Recommendation and New Approaches for Automatic Identification of Groups , 2011, Information Retrieval and Mining in Distributed Environments.

[99]  Balaji Padmanabhan,et al.  SCENE: a scalable two-stage personalized news recommendation system , 2011, SIGIR.

[100]  Amirkhani Ali The Power of Social Media in Developing Nations: New Tools for Closing the Global Digital Divide and Beyond , 2011 .

[101]  David Carmel,et al.  Social recommender systems , 2011, Recommender Systems Handbook.

[102]  Emre Velipasaoglu,et al.  Intent-based diversification of web search results: metrics and algorithms , 2011, Information Retrieval.

[103]  Uzay Kaymak,et al.  News personalization using the CF-IDF semantic recommender , 2011, WIMS '11.

[104]  Neil J. Hurley,et al.  Novelty and Diversity in Top-N Recommendation -- Analysis and Evaluation , 2011, TOIT.

[105]  Saul Vargas,et al.  Rank and relevance in novelty and diversity metrics for recommender systems , 2011, RecSys '11.

[106]  Mao Ye,et al.  Exploiting geographical influence for collaborative point-of-interest recommendation , 2011, SIGIR.

[107]  George Karypis,et al.  A Comprehensive Survey of Neighborhood-based Recommendation Methods , 2011, Recommender Systems Handbook.

[108]  Rong Hu,et al.  Enhancing collaborative filtering systems with personality information , 2011, RecSys '11.

[109]  Pasquale Lops,et al.  Content-based Recommender Systems: State of the Art and Trends , 2011, Recommender Systems Handbook.

[110]  Eli Pariser The Filter Bubble: How the New Personalized Web Is Changing What We Read and How We Think , 2012 .

[111]  Petter Bae Brandtzæg,et al.  Social Networking Sites: Their Users and Social Implications - A Longitudinal Study , 2012, J. Comput. Mediat. Commun..

[112]  S. Mollin Revisiting binomial order in English: ordering constraints and reversibility1 , 2012, English Language and Linguistics.

[113]  Yong Yu,et al.  Collaborative personalized tweet recommendation , 2012, SIGIR '12.

[114]  Sophie Ahrens,et al.  Recommender Systems , 2012 .

[115]  M. Angela Sasse,et al.  Too close for comfort: a study of the effectiveness and acceptability of rich-media personalized advertising , 2012, CHI.

[116]  Toniann Pitassi,et al.  Fairness through awareness , 2011, ITCS '12.

[117]  Lawrence Birnbaum,et al.  Social media-driven news personalization , 2012, RSWeb@RecSys.

[118]  Michael Gamon,et al.  Mining Entity Types from Query Logs via User Intent Modeling , 2012, ACL.

[119]  Ling Guan,et al.  A hybrid approach for personalized recommendation of news on the Web , 2012, Expert Syst. Appl..

[120]  Deepak Agarwal,et al.  Multi-faceted ranking of news articles using post-read actions , 2012, CIKM '12.

[121]  Veda C. Storey,et al.  Business Intelligence and Analytics: From Big Data to Big Impact , 2012, MIS Q..

[122]  Boi Faltings,et al.  Personalized news recommendation with context trees , 2013, RecSys.

[123]  A. Darzi,et al.  Harnessing the cloud of patient experience: using social media to detect poor quality healthcare , 2013, BMJ quality & safety.

[124]  Mao Ye,et al.  Location recommendation for out-of-town users in location-based social networks , 2013, CIKM.

[125]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[126]  J. Bobadilla,et al.  Recommender systems survey , 2013, Knowl. Based Syst..

[127]  Fabio Crestani,et al.  Building user profiles from topic models for personalised search , 2013, CIKM.

[128]  Huan Liu,et al.  Exploring temporal effects for location recommendation on location-based social networks , 2013, RecSys.

[129]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[130]  Cong Yu,et al.  An expressive framework and efficient algorithms for the analysis of collaborative tagging , 2013, The VLDB Journal.

[131]  Husna Sarirah Husin News recommendation based on Web usage and Web content mining , 2013, 2013 IEEE 29th International Conference on Data Engineering Workshops (ICDEW).

[132]  D. Jannach,et al.  EVALUATING THE QUALITY OF PLAYLISTS BASED ON HAND-CRAFTED SAMPLES , 2013 .

[133]  Xinyi Huang,et al.  Structural Diversity in Social Recommender Systems , 2013, RSWeb@RecSys.

[134]  Li Chen,et al.  Generating virtual ratings from chinese reviews to augment online recommendations , 2013, TIST.

[135]  Wesley De Neve,et al.  Using topic models for Twitter hashtag recommendation , 2013, WWW.

[136]  Heiko Motschenbacher Gentlemen before Ladies? A Corpus-Based Study of Conjunct Order in Personal Binomials , 2013 .

[137]  Márcia Gonçalves de Oliveira,et al.  Recommendation of programming activities by multi-label classification for a formative assessment of students , 2013, Expert Syst. Appl..

[138]  Eric Horvitz,et al.  Predicting Depression via Social Media , 2013, ICWSM.

[139]  Eric Horvitz,et al.  Predicting postpartum changes in emotion and behavior via social media , 2013, CHI.

[140]  Huan Liu,et al.  Social recommendation: a review , 2013, Social Network Analysis and Mining.

[141]  Leng Ya Survey of Recommendation Based on Collaborative Filtering , 2014 .

[142]  Juan A. Recio-García,et al.  Development of a group recommender application in a Social Network , 2014, Knowl. Based Syst..

[143]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[144]  Charles B. Ward,et al.  Time Trends in Printed News Coverage of Female Subjects, 1880–2008 , 2014 .

[145]  Shahram Khadivi,et al.  Graph-Based Semi-Supervised Conditional Random Fields For Spoken Language Understanding Using Unaligned Data , 2014, ALTA.

[146]  Chi-Yin Chow,et al.  LORE: exploiting sequential influence for location recommendations , 2014, SIGSPATIAL/GIS.

[147]  Rossano Schifanella,et al.  Cold-start news recommendation with domain-dependent browse graph , 2014, RecSys '14.

[148]  Gao Cong,et al.  Graph-based Point-of-interest Recommendation with Geographical and Temporal Influences , 2014, CIKM.

[149]  Ludovico Boratto,et al.  Modeling the Preferences of a Group of Users Detected by Clustering: a Group Recommendation Case-Study , 2014, WIMS '14.

[150]  Jürgen Pfeffer,et al.  Characterizing the life cycle of online news stories using social media reactions , 2013, CSCW.

[151]  Ben Y. Zhao,et al.  Uncovering social network sybils in the wild , 2011, IMC '11.

[152]  N. Diakopoulos Algorithmic Accountability Reporting: On the Investigation of Black Boxes , 2014 .

[153]  Ludovico Boratto,et al.  The rating prediction task in a group recommender system that automatically detects groups: architectures, algorithms, and performance evaluation , 2014, Journal of Intelligent Information Systems.

[154]  Pasquale De Meo,et al.  On Facebook, most ties are weak , 2012, Commun. ACM.

[155]  Shuang-Hong Yang,et al.  Large-scale high-precision topic modeling on twitter , 2014, KDD.

[156]  Karrie Karahalios,et al.  Auditing Algorithms : Research Methods for Detecting Discrimination on Internet Platforms , 2014 .

[157]  R. Goodin,et al.  The Oxford Handbook of Public Accountability , 2014 .

[158]  Jon Rokne,et al.  Encyclopedia of Social Network Analysis and Mining , 2014, Springer New York.

[159]  Andreas Lommatzsch,et al.  Real-Time News Recommendation Using Context-Aware Ensembles , 2014, ECIR.

[160]  Ling Chen,et al.  LCARS , 2014, ACM Trans. Inf. Syst..

[161]  Ludovico Boratto,et al.  Using Collaborative Filtering to Overcome the Curse of Dimensionality when Clustering Users in a Group Recommender System , 2014, ICEIS.

[162]  Pradeep Kumar,et al.  A web recommendation system considering sequential information , 2015, Decis. Support Syst..

[163]  Li Chen,et al.  Recommender systems based on user reviews: the state of the art , 2015, User Modeling and User-Adapted Interaction.

[164]  Chiranjib Bhattacharyya,et al.  Content Driven User Profiling for Comment-Worthy Recommendations of News and Blog Articles , 2015, RecSys.

[165]  F. Maxwell Harper,et al.  The MovieLens Datasets: History and Context , 2016, TIIS.

[166]  Alexandre Termier,et al.  Interactive User Group Analysis , 2015, CIKM.

[167]  Hui Fang,et al.  University of Delaware at TREC 2015: Combining Opinion Profile Modeling with Complex Context Filtering for Contextual Suggestion , 2015, TREC.

[168]  Dong Wang,et al.  The Who-To-Follow System at Twitter: Strategy, Algorithms, and Revenue Impact , 2015, Interfaces.

[169]  Deng Cai,et al.  Opinions matter: a general approach to user profile modeling for contextual suggestion , 2015, Information Retrieval Journal.

[170]  Fabio Crestani,et al.  University of Lugano at TREC 2015: Contextual Suggestion and Temporal Summarization Tracks , 2015, TREC.

[171]  Sunita Barve,et al.  Survey on Collaborative Filtering, Content-based Filtering and Hybrid Recommendation System , 2015 .

[172]  Xiang Zhang,et al.  Character-level Convolutional Networks for Text Classification , 2015, NIPS.

[173]  Chi-Yin Chow,et al.  GeoSoCa: Exploiting Geographical, Social and Categorical Correlations for Point-of-Interest Recommendations , 2015, SIGIR.

[174]  Avishek Anand,et al.  Automated News Suggestions for Populating Wikipedia Entity Pages , 2015, CIKM.

[175]  Jure Leskovec,et al.  Inferring Networks of Substitutable and Complementary Products , 2015, KDD.

[176]  Bum Chul Kwon,et al.  Do People Really Experience Information Overload While Reading Online Reviews? , 2015, Int. J. Hum. Comput. Interact..

[177]  Boi Faltings,et al.  Predicting Online Performance of News Recommender Systems Through Richer Evaluation Metrics , 2015, RecSys.

[178]  Ludovico Boratto,et al.  ART: group recommendation approaches for automatically detected groups , 2015, Int. J. Mach. Learn. Cybern..

[179]  Bracha Shapira,et al.  Recommender Systems Handbook , 2015, Springer US.

[180]  Talel Abdessalem,et al.  POI Recommendation: Towards Fused Matrix Factorization with Geographical and Temporal Influences , 2015, RecSys.

[181]  Yifeng Zeng,et al.  Personalized Ranking Metric Embedding for Next New POI Recommendation , 2015, IJCAI.

[182]  Aron Culotta,et al.  Using matched samples to estimate the effects of exercise on mental health from twitter , 2015, AAAI 2015.

[183]  Dong Wang,et al.  Click-through Prediction for Advertising in Twitter Timeline , 2015, KDD.

[184]  Saul Vargas,et al.  Novelty and Diversity in Recommender Systems , 2015, Recommender Systems Handbook.

[185]  Ke Wang,et al.  Trip Recommendation Meets Real-World Constraints , 2016, ACM Trans. Inf. Syst..

[186]  Ludovico Boratto,et al.  A Tool to Analyze the Reading Behavior of the Users in a Mobile Digital Publishing Platform , 2016, KDWeb.

[187]  Fabio Crestani,et al.  User Model Enrichment for Venue Recommendation , 2016, AIRS.

[188]  Munmun De Choudhury,et al.  Characterizing Dietary Choices, Nutrition, and Language in Food Deserts via Social Media , 2016, CSCW.

[189]  Joseph A. Konstan,et al.  Exploring the Value of Personality in Predicting Rating Behaviors: A Study of Category Preferences on MovieLens , 2016, RecSys.

[190]  David Lo,et al.  Spiteful, One-Off, and Kind: Predicting Customer Feedback Behavior on Twitter , 2016, SocInfo.

[191]  Deborah Estrin,et al.  Immersive Recommendation: News and Event Recommendations Using Personal Digital Traces , 2016, WWW.

[192]  Mark Dredze,et al.  Discovering Shifts to Suicidal Ideation from Mental Health Content in Social Media , 2016, CHI.

[193]  Fabio Crestani,et al.  Like It or Not , 2016, ACM Comput. Surv..

[194]  Fabio Crestani,et al.  Venue Appropriateness Prediction for Contextual Suggestion , 2016, TREC.

[195]  Evaggelia Pitoura,et al.  Centrality-Aware Link Recommendations , 2016, WSDM.

[196]  Sihem Amer-Yahia,et al.  Multi-Objective Group Discovery on the Social Web , 2016, ECML/PKDD.

[197]  Xiaojun Wan,et al.  CMiner: Opinion Extraction and Summarization for Chinese Microblogs , 2016, IEEE Transactions on Knowledge and Data Engineering.

[198]  Ludovico Boratto Group Recommender Systems: State of the Art, Emerging Aspects and Techniques, and Research Challenges , 2016, ECIR.

[199]  Zhihong Shen,et al.  User Fatigue in Online News Recommendation , 2016, WWW.

[200]  Gianni Fenu,et al.  Influence of Rating Prediction on Group Recommendation's Accuracy , 2016, IEEE Intelligent Systems.

[201]  Yong Yu,et al.  Are You Influenced by Others When Rating?: Improve Rating Prediction by Conformity Modeling , 2016, RecSys.

[202]  Gianni Fenu,et al.  Discovery and representation of the preferences of automatically detected groups: Exploiting the link between group modeling and clustering , 2016, Future Gener. Comput. Syst..

[203]  Dmitry Lagun,et al.  Understanding User Attention and Engagement in Online News Reading , 2016, WSDM.

[204]  Chunming Rong,et al.  Fast algorithms to evaluate collaborative filtering recommender systems , 2016, Knowl. Based Syst..

[205]  Francesco Ricci,et al.  Observing Group Decision Making Processes , 2016, RecSys.

[206]  Nick Craswell,et al.  Query Expansion with Locally-Trained Word Embeddings , 2016, ACL.

[207]  Fabio Crestani,et al.  Joint Collaborative Ranking with Social Relationships in Top-N Recommendation , 2016, CIKM.

[208]  Gaston Crommenlaan TravelWithFriends : a Hybrid Group Recommender System for Travel Destinations , 2016 .

[209]  Adam Tauman Kalai,et al.  Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings , 2016, NIPS.

[210]  Ludovico Boratto Group Recommender Systems , 2016, RecSys.

[211]  Sharad Goel,et al.  The Effect of Recommendations on Network Structure , 2016, WWW.

[212]  Stephanie Yang,et al.  Detecting Trending Venues Using Foursquare's Data , 2016, RecSys Posters.

[213]  Kim Schouten,et al.  Survey on Aspect-Level Sentiment Analysis , 2016, IEEE Transactions on Knowledge and Data Engineering.

[214]  F. Baker,et al.  birtr: A Package for “The Basics of Item Response Theory Using R” , 2018, Applied psychological measurement.

[215]  Paola Velardi,et al.  What to Write? A topic recommender for journalists , 2017, NLPmJ@EMNLP.

[216]  Bamshad Mobasher,et al.  Recommender Systems as Multistakeholder Environments , 2017, UMAP.

[217]  Jure Leskovec,et al.  Online Actions with Offline Impact: How Online Social Networks Influence Online and Offline User Behavior , 2016, WSDM.

[218]  Gisele L. Pappa,et al.  A Warm Welcome Matters!: The Link Between Social Feedback and Weight Loss in /r/loseit , 2017, WWW.

[219]  Guoji Zhang,et al.  A balanced modularity maximization link prediction model in social networks , 2017, Inf. Process. Manag..

[220]  Chiu-Ching Tuan,et al.  Collaborative location recommendations with dynamic time periods , 2017, Pervasive Mob. Comput..

[221]  Lorena Recalde,et al.  Who is suitable to be followed back when you are a Twitter interested in Politics? , 2017, DG.O.

[222]  Robin D. Burke,et al.  Multisided Fairness for Recommendation , 2017, ArXiv.

[223]  Fabio Crestani,et al.  A Cross-Platform Collection for Contextual Suggestion , 2017, SIGIR.

[224]  Scott Sanner,et al.  A longitudinal study of topic classification on Twitter , 2017, ICWSM.

[225]  Jimmy J. Lin,et al.  Anserini: Enabling the Use of Lucene for Information Retrieval Research , 2017, SIGIR.

[226]  Fabio Crestani,et al.  Personalized ranking for context-aware venue suggestion , 2017, SAC.

[227]  Fabio Crestani,et al.  Personalized Keyword Boosting for Venue Suggestion Based on Multiple LBSNs , 2017, ECIR.

[228]  Laks V. S. Lakshmanan,et al.  Exploring Rated Datasets with Rating Maps , 2017, WWW.

[229]  Benjamin Recht,et al.  KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics , 2016, 2017 IEEE 33rd International Conference on Data Engineering (ICDE).

[230]  Gianni Fenu,et al.  Investigating the role of the rating prediction task in granularity-based group recommender systems and big data scenarios , 2017, Inf. Sci..

[231]  Gianni Fenu,et al.  Influence of Rating Prediction on the Accuracy of a Group Recommender System that Detects Groups , 2017 .

[232]  Soummya Kar,et al.  Reputation-Based Ranking Systems and Their Resistance to Bribery , 2017, 2017 IEEE International Conference on Data Mining (ICDM).

[233]  Fabio Crestani,et al.  Venue Appropriateness Prediction for Personalized Context-Aware Venue Suggestion , 2017, SIGIR.

[234]  Mingming Jiang,et al.  A Time-Aware Personalized Point-of-Interest Recommendation via High-Order Tensor Factorization , 2017, ACM Trans. Inf. Syst..

[235]  Thiago Alexandre Salgueiro Pardo,et al.  Opinion summarization methods: Comparing and extending extractive and abstractive approaches , 2017, Expert Syst. Appl..

[236]  Munmun De Choudhury,et al.  The Language of Social Support in Social Media and Its Effect on Suicidal Ideation Risk , 2017, ICWSM.

[237]  Francesco Gullo,et al.  Exploiting search history of users for news personalization , 2017, Inf. Sci..

[238]  Min Song,et al.  An adaptable fine-grained sentiment analysis for summarization of multiple short online reviews , 2017, Data Knowl. Eng..

[239]  Arvind Narayanan,et al.  Semantics derived automatically from language corpora contain human-like biases , 2016, Science.

[240]  Enrique Amigó,et al.  An Axiomatic Analysis of Diversity Evaluation Metrics: Introducing the Rank-Biased Utility Metric , 2018, SIGIR.

[241]  Fabio Crestani,et al.  Personalized Context-Aware Point of Interest Recommendation , 2018, ACM Trans. Inf. Syst..

[242]  W. Bruce Croft,et al.  Target Apps Selection: Towards a Unified Search Framework for Mobile Devices , 2018, SIGIR.

[243]  Pablo Castells,et al.  Enhancing structural diversity in social networks by recommending weak ties , 2018, RecSys.

[244]  Krishna P. Gummadi,et al.  Equity of Attention: Amortizing Individual Fairness in Rankings , 2018, SIGIR.

[245]  Dietmar Jannach,et al.  Sequence-Aware Recommender Systems , 2018, UMAP.

[246]  Yifan Sun,et al.  A Sparse Topic Model for Extracting Aspect-Specific Summaries from Online Reviews , 2018, WWW.

[247]  Dietmar Jannach,et al.  Evaluation of session-based recommendation algorithms , 2018, User Modeling and User-Adapted Interaction.

[248]  Fabio Crestani,et al.  A Collaborative Ranking Model with Contextual Similarities for Venue Suggestion , 2018, IIR.

[249]  Pablo Castells,et al.  Contact Recommendations in Social Networks , 2018, Collaborative Recommendations.

[250]  Norbert Fuhr,et al.  Some Common Mistakes In IR Evaluation, And How They Can Be Avoided , 2018, SIGIR Forum.

[251]  Evaggelia Pitoura,et al.  On Measuring Bias in Online Information , 2017, SGMD.

[252]  Daniel Jurafsky,et al.  Word embeddings quantify 100 years of gender and ethnic stereotypes , 2017, Proceedings of the National Academy of Sciences.

[253]  W. Bruce Croft,et al.  In Situ and Context-Aware Target Apps Selection for Unified Mobile Search , 2018, CIKM.

[254]  Fabio Crestani,et al.  A Collaborative Ranking Model with Multiple Location-based Similarities for Venue Suggestion , 2018, ICTIR.

[255]  Juliana P. C. Pirovani,et al.  Structures Discovering for Optimizing External Clustering Validation Metrics , 2019 .

[256]  Tobias D. Krafft,et al.  What did you see? A study to measure personalization in Google’s search engine , 2019, EPJ Data Science.

[257]  Fabio Crestani,et al.  Predicting Relevant Conversation Turns for Improved Retrieval in Multi-Turn Conversational Search , 2019, TREC.

[258]  Academic English Proficiency Assessment Using a Computerized Adaptive Test , 2019, TEMA - Tendências em Matemática Aplicada e Computacional.

[259]  W. Bruce Croft,et al.  Asking Clarifying Questions in Open-Domain Information-Seeking Conversations , 2019, SIGIR.

[260]  Mohsen Afsharchi,et al.  Category-Aware Location Embedding for Point-of-Interest Recommendation , 2019, ICTIR.

[261]  Catherine E. Tucker,et al.  Algorithmic Bias? An Empirical Study of Apparent Gender-Based Discrimination in the Display of STEM Career Ads , 2019, Manag. Sci..

[262]  Pável Calado,et al.  OpinionLink: Leveraging user opinions for product catalog enrichment , 2019, Inf. Process. Manag..

[263]  Yoav Goldberg,et al.  Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them , 2019, NAACL-HLT.

[264]  Robin Burke,et al.  Multi-stakeholder Recommendation and its Connection to Multi-sided Fairness , 2019, RMSE@RecSys.

[265]  Mohsen Afsharchi,et al.  LGLMF: Local Geographical based Logistic Matrix Factorization Model for POI Recommendation , 2019, AIRS.

[266]  Junade Ali,et al.  String similarity algorithms for a ticket classification system , 2019, 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT).

[267]  Fabio Crestani,et al.  Understanding Mobile Search Task Relevance and User Behaviour in Context , 2018, CHIIR.

[268]  M. V. Drunen,et al.  Know your algorithm: what media organizations need to explain to their users about news personalization , 2019, International Data Privacy Law.

[269]  Emma Gerritse Impact of Debiasing Word Embeddings on Information Retrieval , 2019, FDIA@ESSIR.

[270]  Luis Terán,et al.  Who You Should Not Follow: Extracting Word Embeddings from Tweets to Identify Groups of Interest and Hijackers in Demonstrations , 2019, IEEE Transactions on Emerging Topics in Computing.

[271]  Fabio Crestani,et al.  Beyond Modelling: Understanding Mental Disorders in Online Social Media , 2020, ECIR.

[272]  Fabio Crestani,et al.  Venue Suggestion Using Social-Centric Scores , 2018, BIAS.

[273]  Panagiotis Papadakos,et al.  bias goggles: Graph-Based Computation of the Bias of Web Domains Through the Eyes of Users , 2020, ECIR.

[274]  Fabio Crestani,et al.  Joint Geographical and Temporal Modeling Based on Matrix Factorization for Point-of-Interest Recommendation , 2020, ECIR.

[275]  Rik van Noord,et al.  Fair Is Better than Sensational: Man Is to Doctor as Woman Is to Doctor , 2019, CL.

[276]  Fabio Crestani,et al.  A Joint Two-Phase Time-Sensitive Regularized Collaborative Ranking Model for Point of Interest Recommendation , 2019, IEEE Transactions on Knowledge and Data Engineering.

[277]  F. Crestani,et al.  Harnessing Evolution of Multi-Turn Conversations for Effective Answer Retrieval , 2019, CHIIR.

[278]  Nicolas Hug,et al.  Surprise: A Python library for recommender systems , 2020, J. Open Source Softw..

[279]  P. Dankelmann,et al.  The Average Eccentricity of a Graph and its Subgraphs , 2022 .