Universal set of quantum gates for double-dot exchange-only spin qubits with intradot coupling

We present a universal set of quantum gate operations based on exchange-only spin qubits in a double quantum dot, where each qubit is obtained by three electrons in the (2,1) filling. Gate operations are addressed by modulating electrostatically the tunneling barrier and the energy offset between the two dots, singly and doubly occupied respectively. We propose explicit gate sequences of single qubit operations for arbitrary rotations, and the two-qubit controlled NOT gate, to complete the universal set. The unswitchable interaction between the two electrons of the doubly occupied quantum dot is taken into account. Short gate times are obtained by employing spin density functional theory simulations.

[1]  Jacob M. Taylor,et al.  Self-consistent measurement and state tomography of an exchange-only spin qubit. , 2013, Nature nanotechnology.

[2]  S. N. Coppersmith,et al.  High-fidelity gates in quantum dot spin qubits , 2013, Proceedings of the National Academy of Sciences.

[3]  John King Gamble,et al.  Pulse-gated quantum-dot hybrid qubit. , 2012, Physical review letters.

[4]  J. Levy Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. , 2001, Physical review letters.

[5]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[6]  Adele E. Schmitz,et al.  Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.

[7]  Zhan Shi,et al.  Quantum control and process tomography of a semiconductor quantum dot hybrid qubit , 2014, Nature.

[8]  Elena Ferraro,et al.  Effective Hamiltonian for the hybrid double quantum dot qubit , 2013, Quantum Inf. Process..

[9]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[10]  Xin Wang,et al.  Robust two-qubit gates for exchange-coupled qubits , 2014 .

[11]  Zhan Shi,et al.  Fast coherent manipulation of three-electron states in a double quantum dot , 2013, Nature Communications.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  L. Hollenberg,et al.  Single-shot readout of an electron spin in silicon , 2010, Nature.

[14]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[15]  Xuedong Hu,et al.  Fast hybrid silicon double-quantum-dot qubit. , 2011, Physical review letters.

[16]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[17]  G. Burkard,et al.  Universal quantum computing with spin and valley states , 2012, 1203.5041.

[18]  S. Sarma,et al.  Dynamically corrected gates for an exchange-only qubit , 2013, 1303.6950.

[19]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[20]  Stephen M. Wandzura,et al.  Universal quantum computation and leakage reduction in the 3-qubit decoherence free subsystem , 2011, Quantum Inf. Comput..

[21]  Romain Wacquez,et al.  Few electron limit of n-type metal oxide semiconductor single electron transistors , 2012, Nanotechnology.

[22]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[23]  Andrew G. Glen,et al.  APPL , 2001 .

[24]  L. Hedin,et al.  A local exchange-correlation potential for the spin polarized case. i , 1972 .

[25]  Constantin Brif,et al.  Robust control of quantum gates via sequential convex programming , 2013, ArXiv.

[26]  Jacob M. Taylor,et al.  Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .

[27]  Eli Yablonovitch,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[28]  Giuseppe Iannaccone,et al.  Geometrical Effects on Valley-Orbital Filling Patterns in Silicon Quantum Dots for Robust Qubit Implementation , 2012 .

[29]  Jefferson,et al.  Effective charge-spin models for quantum dots. , 1996, Physical review. B, Condensed matter.

[30]  Romain Wacquez,et al.  Compact silicon double and triple dots realized with only two gates , 2009, 1005.5686.