Experimental Observation on the Uniaxial Cyclic Deformation Behaviour of TA16 Titanium Alloy

The cyclic deformation including the ratcheting of TA16 titanium alloy was investigated experimentally at room temperature. Experimental results under symmetrical strain-controlled cyclic loading with various strain amplitudes show that the responded stress amplitude keeps almost unchanged with the increasing number of cycles. It is concluded that TA16 titanium alloy can be regarded as a cyclic stable material. Remarkable ratcheting was also observed under asymmetrical stress-controlled cyclic loading, i.e., ratcheting strain increases with the increasing number of cycles. The ratcheting strain strongly depends on the stress level and increases with the increase of applied mean stress, stress amplitude and stress ratio. These findings are useful to reasonably model the cyclic deformation of TA16 titanium alloy.