Controlling energy and charge transfer in linear chlorophyll dimers.

A series of linkers constructed from combinations of phenyl and ethynyl groups is shown to permit ultrafast energy transfer between two chlorophylls, while allowing control over radical cation migration between them.

[1]  M. Wasielewski,et al.  Linker-controlled energy and charge transfer within chlorophyll trefoils. , 2006, Angewandte Chemie.

[2]  M. Wasielewski,et al.  Intramolecular electron transfer through the 20-position of a chlorophyll a derivative: an unexpectedly efficient conduit for charge transport. , 2006, Journal of the American Chemical Society.

[3]  K. Tomizaki,et al.  Photophysical Properties of Phenylethyne-Linked Porphyrin and Oxochlorin Dyads , 2004 .

[4]  S. J. Collins,et al.  The effect of axial Mg ligation on the geometry and spin density distribution of chlorophyll and bacteriochlorophyll cation free radical models: a density functional study. , 2001, Journal of the American Chemical Society.

[5]  A. Knoesen,et al.  Ultrahigh-temperature polymers for second-order nonlinear optics. Synthesis and properties of robust, processable, chromophore-embedded polyimides , 2000 .

[6]  H. Anderson,et al.  Cooperative Self-Assembly of Double-Strand Conjugated Porphyrin Ladders , 1999 .

[7]  B. Albinsson,et al.  Mediated electronic coupling: Singlet energy transfer in porphyrin dimers enhanced by the bridging chromophore , 1999 .

[8]  Dongho Kim,et al.  Excited-State Energy Transfer and Ground-State Hole/Electron Hopping in p-Phenylene-Linked Porphyrin Dimers , 1998 .

[9]  R. Hochstrasser,et al.  Ultrafast Dynamics of Highly Conjugated Porphyrin Arrays , 1998 .

[10]  A. Scherz,et al.  ENDOR studies of substituted chlorophyll cation radicals , 1998 .

[11]  M. Therien,et al.  Exceptional electronic modulation of porphyrins through meso-arylethynyl groups. Electronic spectroscopy, electronic structure, and electrochemistry of [5,15-bis](aryl)ethynyl]-10,20-diphenylporphinato]zinc(II) complexes , 1996 .

[12]  H. Anderson Conjugated Porphyrin Ladders , 1994 .

[13]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[14]  T. Spiro,et al.  Predicted geometries of porphyrin excited states and radical cations and anions , 1991 .

[15]  M. Huber,et al.  ENDOR studies of π-electron delocalization in covalently linked porphyrin dimers. Model systems for the primary donor in photosynthesis? , 1990 .

[16]  T. Shaler,et al.  Evidence for a 1,2-fluoride shift in a gaseous cation , 1989 .

[17]  M. Wasielewski,et al.  Endor and triple resonance in solutions of the chlorophyll a and bis(chlorophyll)cyclophane radical cations , 1986 .

[18]  W. Lubitz,et al.  Radicals in solution studied by endor and triple resonance spectroscopy , 1982 .

[19]  G. Feher,et al.  ENDOR EXPERIMENTS ON CHLOROPHYLL AND BACTERIOCHLOROPHYLL IN VITRO AND IN THE PHOTOSYNTHETIC UNIT * , 1975, Annals of the New York Academy of Sciences.

[20]  J. Norris,et al.  Electron nuclear double resonance of bacteriochlorophyll free radical in vitro and in vivo. , 1973, Journal of the American Chemical Society.

[21]  K. Smith,et al.  Pyrroles and related compounds. XXIV. Separation and oxidative degradation of chlorophyll derivatives. , 1973, Journal of The Chemical Society-perkin Transactions 1.