Surveying the reach and maturity of machine learning and artificial intelligence in astronomy

Machine learning (automated processes that learn by example in order to classify, predict, discover, or generate new data) and artificial intelligence (methods by which a computer makes decisions or discoveries that would usually require human intelligence) are now firmly established in astronomy. Every week, new applications of machine learning and artificial intelligence are added to a growing corpus of work. Random forests, support vector machines, and neural networks are now having a genuine impact for applications as diverse as discovering extrasolar planets, transient objects, quasars, and gravitationally lensed systems, forecasting solar activity, and distinguishing between signals and instrumental effects in gravitational wave astronomy. This review surveys contemporary, published literature on machine learning and artificial intelligence in astronomy and astrophysics. Applications span seven main categories of activity: classification, regression, clustering, forecasting, generation, discovery, and the development of new scientific insights. These categories form the basis of a hierarchy of maturity, as the use of machine learning and artificial intelligence emerges, progresses, or becomes established.

[1]  Dougal Mackey,et al.  Galactic cartography with SkyMapper – I. Population substructure and the stellar number density of the inner halo , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  France,et al.  Photometric Redshifts based on standard SED fitting procedures , 2000 .

[3]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[4]  D. C. Koo,et al.  Optical multicolors - A poor person's z machine for galaxies , 1985 .

[5]  Yanxia Zhang,et al.  Astronomy in the Big Data Era , 2015, Data Sci. J..

[6]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[7]  E. Ishida,et al.  On the realistic validation of photometric redshifts , 2017, 1701.08748.

[8]  Duo Xu,et al.  Assessing the Performance of a Machine Learning Algorithm in Identifying Bubbles in Dust Emission , 2017, 1711.03480.

[9]  O. Ilbert,et al.  The many flavours of photometric redshifts , 2018, Nature Astronomy.

[10]  Ofer Lahav,et al.  ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .

[11]  R. S. Booth,et al.  MeerKAT Key Project Science, Specifications, and Proposals , 2009, 0910.2935.

[12]  Karl Glazebrook,et al.  Finding strong lenses in CFHTLS using convolutional neural networks , 2017, 1704.02744.

[13]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[14]  Umaa Rebbapragada,et al.  Machine Learning for the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[15]  Kyler Kuehn,et al.  VDES J2325-5229 a z=2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning , 2016, 1607.01391.

[16]  Shihai Yang,et al.  Research on the fault diagnosis and self-healing technology of unattended Antarctic telescope , 2018, Astronomical Telescopes + Instrumentation.

[17]  Ignacio Sevilla-Noarbe,et al.  Effect of training characteristics on object classification: An application using Boosted Decision Trees , 2015, Astron. Comput..

[18]  R. P. Eatough,et al.  Selection of radio pulsar candidates using artificial neural networks , 2010, 1005.5068.

[19]  Andrew J. Connolly,et al.  Statistics, Data Mining, and Machine Learning in Astronomy , 2014 .

[20]  A. Naim,et al.  Neural computation as a tool for galaxy classification: methods and examples , 1995, astro-ph/9508012.

[21]  Roland Haas,et al.  Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers , 2017, 1711.06276.

[22]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[23]  A. J. Drake,et al.  An Updated Catalog of 4680 Northern Eclipsing Binaries with Algol-type Light-curve Morphology in the Catalina Sky Surveys , 2018, The Astrophysical Journal Supplement Series.

[24]  D. Gerdes,et al.  PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.

[25]  Massimo Brescia,et al.  A cooperative approach among methods for photometric redshifts estimation: an application to KiDS data , 2016, 1612.02173.

[26]  Ben Hoyle,et al.  Measuring photometric redshifts using galaxy images and Deep Neural Networks , 2015, Astron. Comput..

[27]  Jinjin Li,et al.  A Machine Learning Based Morphological Classification of 14,245 Radio AGNs Selected from the Best–Heckman Sample , 2018, The Astrophysical Journal Supplement Series.

[28]  Koichi Murase,et al.  Methodology study of machine learning for the neutron star equation of state , 2017, Physical Review D.

[29]  B. Póczos,et al.  CMU DeepLens: deep learning for automatic image-based galaxy–galaxy strong lens finding , 2017, Monthly Notices of the Royal Astronomical Society.

[30]  Chris Power,et al.  Reliable mass calculation in spherical gravitating systems , 2018, Monthly Notices of the Royal Astronomical Society.

[31]  S. G. Djorgovski,et al.  Discovery, classification, and scientific exploration of transient events from the Catalina Real-time Transient Survey , 2011, 1111.0313.

[32]  Jeff Schneider,et al.  Systematic Labeling Bias in Galaxy Morphologies , 2018, The Astronomical Journal.

[33]  Evan Jones,et al.  Analysis of a Custom Support Vector Machine for Photometric Redshift Estimation and the Inclusion of Galaxy Shape Information , 2016, 1607.00044.

[34]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[35]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[36]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[37]  Michele Piana,et al.  A Hybrid Supervised/Unsupervised Machine Learning Approach to Solar Flare Prediction , 2017, ArXiv.

[38]  Levi Fussell,et al.  Forging new worlds: high-resolution synthetic galaxies with chained generative adversarial networks , 2018, Monthly Notices of the Royal Astronomical Society.

[39]  A. Szalay,et al.  The World-Wide Telescope , 2001 .

[40]  John Southworth,et al.  Data mining for dwarf novae in SDSS, GALEX and astrometric catalogues , 2009, 0910.3218.

[41]  Boris Leistedt,et al.  Data-driven, Interpretable Photometric Redshifts Trained on Heterogeneous and Unrepresentative Data , 2016, 1612.00847.

[42]  Marc Van Droogenbroeck,et al.  Supervised detection of exoplanets in high-contrast imaging sequences , 2017, 1712.02841.

[43]  David W. Hogg,et al.  STAR–GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING , 2012, 1206.4306.

[44]  Mika Rafieferantsoa,et al.  Predicting the neutral hydrogen content of galaxies from optical data using machine learning , 2018, Monthly Notices of the Royal Astronomical Society.

[45]  Joaquín B. Ordieres Meré,et al.  Estimates of the atmospheric parameters of M-type stars: a machine-learning perspective , 2018 .

[46]  Pavlos Protopapas,et al.  Automatic Survey-invariant Classification of Variable Stars , 2017, 1801.09737.

[47]  B. Willman,et al.  A Pair of Boötes: A New Milky Way Satellite , 2007, 0705.1378.

[48]  A. Szalay,et al.  Spectral Classification of Quasars in the Sloan Digital Sky Survey: Eigenspectra, Redshift, and Luminosity Effects , 2004, astro-ph/0408578.

[49]  A. Leauthaud,et al.  Galaxy Interactions Trigger Rapid Black Hole Growth: an unprecedented view from the Hyper Suprime-Cam Survey , 2017, 1706.07436.

[50]  Michigan.,et al.  Estimating photometric redshifts with artificial neural networks , 2002, astro-ph/0203250.

[51]  Ashok N. Srivastava,et al.  Advances in Machine Learning and Data Mining for Astronomy , 2012 .

[52]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[53]  S. Smartt,et al.  A First Catalog of Variable Stars Measured by the Asteroid Terrestrial-impact Last Alert System (ATLAS) , 2018, The Astronomical Journal.

[54]  J. Hessels,et al.  Ensemble candidate classification for the LOTAAS pulsar survey , 2018 .

[55]  David J Armstrong,et al.  Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2 , 2016, 1611.01968.

[56]  Fabian Gieseke,et al.  Sacrificing information for the greater good: how to select photometric bands for optimal accuracy , 2015, Monthly Notices of the Royal Astronomical Society.

[57]  Y. Huang,et al.  Three-dimensional interstellar dust reddening maps of the Galactic plane , 2018, Monthly Notices of the Royal Astronomical Society.

[58]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[59]  Christopher J. Conselice The fundamental properties of galaxies and a new galaxy classification system , 2006 .

[60]  G. Kordopatis,et al.  An artificial neural network to discover hypervelocity stars: candidates in Gaia DR1/TGAS , 2017, 1704.07990.

[61]  Tan Yang,et al.  An autoencoder of stellar spectra and its application in automatically estimating atmospheric parameters , 2015, 1508.00338.

[62]  Graziano Ucci,et al.  GAME: GAlaxy Machine learning for Emission lines , 2018, 1803.10236.

[63]  R. P. Norris,et al.  Radio Galaxy Zoo: compact and extended radio source classification with deep learning , 2018, 1801.04861.

[64]  I. B. Vavilova,et al.  BEHIND THE ZONE OF AVOIDANCE OF THE MILKY WAY: WHAT CAN WE RESTORE BY DIRECT AND INDIRECT METHODS? , 2018, Radio physics and radio astronomy.

[65]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[66]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[67]  Thomas R. Devine,et al.  A novel single-pulse search approach to detection of dispersed radio pulses using clustering and supervised machine learning , 2018, Monthly Notices of the Royal Astronomical Society.

[68]  S. Seager,et al.  Computer-aided discovery of debris disk candidates: A case study using the Wide-Field Infrared Survey Explorer (WISE) catalog , 2018, Astron. Comput..

[69]  Vincent J. Carey,et al.  Supervised Machine Learning , 2008 .

[70]  M. Brescia,et al.  PHOTOMETRIC REDSHIFTS FOR QUASARS IN MULTI-BAND SURVEYS , 2013, 1305.5641.

[71]  Michael McLeod,et al.  Estimating the mass of the Local Group using machine learning applied to numerical simulations , 2016, 1606.02694.

[72]  Kerstin Paech,et al.  Anomaly detection for machine learning redshifts applied to SDSS galaxies , 2015, 1503.08214.

[73]  Bo Zhang,et al.  Improved selection criteria for H II regions, based on IRAS sources , 2018, 1802.08354.

[74]  Edwin A. Valentijn,et al.  The Kilo-Degree Survey , 2012, Experimental Astronomy.

[75]  Christopher J. Fluke,et al.  Analysing astronomy algorithms for graphics processing units and beyond: Analysing algorithms for GPUs and beyond , 2010 .

[76]  P. Schipani,et al.  THE FORNAX DEEP SURVEY WITH VST. I. THE EXTENDED AND DIFFUSE STELLAR HALO OF NGC 1399 OUT TO 192 kpc , 2016, 1602.02149.

[77]  Daniel George,et al.  Deep Neural Networks to Enable Real-time Multimessenger Astrophysics , 2016, ArXiv.

[78]  I-Ting Ho (何宜庭),et al.  A machine learning artificial neural network calibration of the strong-line oxygen abundance , 2019, Monthly Notices of the Royal Astronomical Society.

[79]  Thomas A. Prince,et al.  The Outer Halo of the Milky Way as Probed by RR Lyr Variables from the Palomar Transient Facility , 2017, 1710.01276.

[80]  Grant Kennedy,et al.  Discovery of new dipper stars with K2: a window into the inner disc region of T Tauri stars , 2018, 1802.00409.

[81]  A. Aniyan,et al.  Classifying Radio Galaxies with the Convolutional Neural Network , 2017, 1705.03413.

[82]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[83]  Frederic H. Chaffee,et al.  An objective classification scheme for QSO spectra , 1992 .

[84]  Laurence Perreault Levasseur,et al.  Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing , 2017, 1708.08843.

[85]  Rami Qahwaji,et al.  Automatic Short-Term Solar Flare Prediction Using Machine Learning and Sunspot Associations , 2007 .

[86]  Rachael M. Roettenbacher,et al.  Finding flares in Kepler data using machine-learning tools , 2018, Astronomy & Astrophysics.

[87]  A. Katsaggelos,et al.  Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science , 2016, Classical and quantum gravity.

[88]  Graziano Ucci,et al.  Inferring physical properties of galaxies from their emission line spectra , 2016, 1611.00768.

[89]  Yong-Heng Zhao,et al.  Imbalanced Learning for RR Lyrae Stars Based on SDSS and GALEX Databases , 2018, 1801.02293.

[90]  Richard Dekany,et al.  DeepStreaks: identifying fast-moving objects in the Zwicky Transient Facility data with deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[91]  Patrick W. Morris,et al.  Applications of machine-learning algorithms for infrared colour selection of Galactic Wolf–Rayet stars , 2017, 1712.01409.

[92]  M. Den,et al.  Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms , 2016, 1611.01791.

[93]  R. L. M. Corradi,et al.  New young planetary nebulae in IPHAS , 2009, 0904.1937.

[94]  Zhao-Min Wang,et al.  A machine learning method to separate cosmic ray electrons from protons from 10 to 100 GeV using DAMPE data , 2018, Research in Astronomy and Astrophysics.

[95]  Gordon Bell,et al.  Beyond the Data Deluge , 2009, Science.

[96]  D. P. Acharjya,et al.  An Information Retrieval and Recommendation System for Astronomical Observatories , 2017, 1710.05350.

[97]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[98]  Wayne B. Hayes,et al.  SpArcFiRe: morphological selection effects due to reduced visibility of tightly winding arms in distant spiral galaxies , 2017, 1707.02021.

[99]  Massimo Brescia,et al.  Catalog of quasars from the Kilo-Degree Survey Data Release 3 , 2018, Astronomy & Astrophysics.

[100]  Rémi Flamary,et al.  Support vector machine classification of strong gravitational lenses , 2017, 1705.08949.

[101]  Andre Heck,et al.  The Increasing Importance of Statistical Methods in Astronomy , 1985 .

[102]  A. K. Qin,et al.  Finding high-redshift strong lenses in DES using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.

[103]  O. Lahav,et al.  Morphological Classification of galaxies by Artificial Neural Networks , 1992 .

[104]  Edward J. Kim,et al.  Star-galaxy Classification Using Deep Convolutional Neural Networks , 2016, ArXiv.

[105]  Thuy Mai,et al.  Solar Dynamics Observatory (SDO) , 2015 .

[106]  Stephen J. Roberts,et al.  GPz: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts , 2016, 1604.03593.

[107]  Mauro Garofalo,et al.  DAMEWARE: A Web Cyberinfrastructure for Astrophysical Data Mining , 2014, 1406.3538.

[108]  A. Miller,et al.  A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline , 2018, Publications of the Astronomical Society of the Pacific.

[109]  Xinhua Gao,et al.  A Machine-learning-based Investigation of the Open Cluster M67 , 2018, The Astrophysical Journal.

[110]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[111]  Weiming Mao,et al.  Evaluating the Optical Classification of Fermi BCUs Using Machine Learning , 2019, The Astrophysical Journal.

[112]  C. Scheidegger,et al.  Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream , 2018, 1801.07323.

[113]  Daniel George,et al.  Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation with Advanced LIGO Data , 2017, ArXiv.

[114]  M. Kunz,et al.  Cosmic string detection with tree-based machine learning , 2018, 1801.04140.

[115]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[116]  Adam O. Kalinich,et al.  MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS , 2015, 1509.03318.

[117]  Mauricio Solar,et al.  Unsupervised Learning of Structure in Spectroscopic Cubes , 2018 .

[118]  A. A. Sickafoose,et al.  Characterization of Near-Earth Asteroids Using KMTNET-SAAO , 2017, 1709.03305.

[119]  Alexander S. Szalay,et al.  The world-wide telescope , 2001, CACM.

[120]  Jiajia Liu,et al.  A New Tool for CME Arrival Time Prediction using Machine Learning Algorithms: CAT-PUMA , 2018, 1802.02803.

[121]  Neil Davey,et al.  An automatic taxonomy of galaxy morphology using unsupervised machine learning , 2017, 1709.05834.

[122]  David M. Reiman,et al.  Deblending galaxy superpositions with branched generative adversarial networks , 2018, Monthly Notices of the Royal Astronomical Society.

[123]  Alexey B. Markov,et al.  Identification of asteroids trapped inside three-body mean motion resonances: a machine-learning approach , 2017 .

[124]  B. Whitmore,et al.  An objective classification system for spiral galaxies. I The two dominant dimensions , 1984 .

[125]  M. Meneghetti,et al.  The strong gravitational lens finding challenge , 2018, Astronomy & Astrophysics.

[126]  Nikolay,et al.  The Fourth Data Release of the Sloan Digital Sky Survey , 2005, The Astrophysical Journal Supplement Series.

[127]  Massimo Brescia,et al.  The first and second data releases of the Kilo-Degree Survey , 2015, 1507.00742.

[128]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[129]  Lucianne Walkowicz,et al.  Systematic serendipity: a test of unsupervised machine learning as a method for anomaly detection , 2018, Monthly Notices of the Royal Astronomical Society.

[130]  Kirk D. Borne,et al.  Scientific Data Mining in Astronomy , 2009, Next Generation of Data Mining.

[131]  Rachel L. Webster,et al.  Using the Properties of Broad Absorption Line Quasars to Illuminate Quasar Structure , 2018, Monthly Notices of the Royal Astronomical Society.

[132]  Zhi-Hua Zhou,et al.  Isolation Forest , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[133]  Xiao Kong,et al.  Spectral Feature Extraction for DB White Dwarfs Through Machine Learning Applied to New Discoveries in the Sdss DR12 and DR14 , 2018, Publications of the Astronomical Society of the Pacific.

[134]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[135]  M. Bilicki,et al.  Photometric redshifts for the Kilo-Degree Survey , 2017, Astronomy & Astrophysics.

[136]  Brandon C. Kelly,et al.  Data mining for gravitationally lensed quasars , 2014, 1410.4565.

[137]  O. I. Wong,et al.  Radio Galaxy Zoo: machine learning for radio source host galaxy cross-identification , 2018, 1805.05540.

[138]  Usama Fayyad,et al.  THE SKICAT SYSTEM FOR PROCESSING AND ANALYZING DIGITAL IMAGING SKY SURVEYS , 1995 .

[139]  Harinder P. Singh,et al.  Stellar spectral classification using principal component analysis and artificial neural networks , 1998 .

[140]  Xin-Hua Gao,et al.  Memberships, distance and proper-motion of the open cluster NGC 188 based on a machine learning method , 2018, Astrophysics and Space Science.

[141]  Xinping Cui,et al.  A machine learning approach to galaxy-LSS classification - I. Imprints on halo merger trees , 2018, 1803.11156.

[142]  Massimo Brescia,et al.  Photometric redshifts with Quasi Newton Algorithm (MLPQNA). Results in the PHAT1 contest , 2012, 1206.0876.

[143]  A. A. Sickafoose,et al.  Taxonomy and Light-curve Data of 1000 Serendipitously Observed Main-belt Asteroids , 2018, The Astrophysical Journal Supplement Series.

[144]  Mauro Garofalo,et al.  DAMEWARE - Data Mining & Exploration Web Application Resource , 2016 .

[145]  Christopher J. Shallue,et al.  Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90 , 2017, 1712.05044.

[146]  G. Jogesh Babu,et al.  Big data in astronomy , 2012 .

[147]  Maryvonne Gerin,et al.  Clustering the Orion B giant molecular cloud based on its molecular emission. , 2017, Astronomy and astrophysics.

[148]  W. T. Vestrand,et al.  Identifying Red Variables in the Northern Sky Variability Survey , 2004 .

[149]  Joeri van Leeuwen,et al.  Applying Deep Learning to Fast Radio Burst Classification , 2018, The Astronomical Journal.

[150]  Asantha Cooray,et al.  LensFlow: A Convolutional Neural Network in Search of Strong Gravitational Lenses , 2017, 1705.05857.

[151]  Massimo Brescia,et al.  Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[152]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[153]  Robert J. Brunner,et al.  Massive datasets in astronomy , 2001 .

[154]  S. Okamura,et al.  Galaxy types in the Sloan Digital Sky survey using supervised artificial neural networks , 2003, astro-ph/0306390.

[155]  Alberto Micol,et al.  A Population of Compact Elliptical Galaxies Detected with the Virtual Observatory , 2009, Science.

[156]  Gregory Nielson,et al.  Discovering the Unexpected , 2022 .

[157]  Shaun A. Thomas,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living Reviews in Relativity.

[158]  J. Angel,et al.  Adaptive optics for array telescopes using neural-network techniques , 1990, Nature.

[159]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[160]  M. Serra-Ricart,et al.  Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey , 2010 .

[161]  N. J. Wright,et al.  New Galactic supernova remnants discovered with IPHAS , 2013, 1301.6416.

[162]  Jayant Murthy,et al.  Theoretical Validation of Potential Habitability via Analytical and Boosted Tree Methods: An Optimistic Study on Recently Discovered Exoplanets , 2017 .

[163]  Canada.,et al.  Data Mining and Machine Learning in Astronomy , 2009, 0906.2173.

[164]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[165]  Janet E. Drew,et al.  Initial data release from the INT Photometric Hα Survey of the Northern Galactic Plane (IPHAS) , 2007, 0712.0384.

[166]  Amr H. Hassan,et al.  Astrophysical Supercomputing with GPUs: Critical Decisions for Early Adopters* , 2010, Publications of the Astronomical Society of Australia.

[167]  Nick Kaiser,et al.  Pan-STARRS: a wide-field optical survey telescope array , 2004, SPIE Astronomical Telescopes + Instrumentation.

[168]  Donald A. Rosenthal Applying artificial intelligence to astronomical databases - A survey of applicable technology , 1988 .

[169]  C. B. D'Andrea,et al.  Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing , 2015, Physical Review D.

[170]  G. Djorgovski Astrophysics in the Era of Massive Time-Domain Surveys , 2014 .

[171]  Brad E. Tucker,et al.  Convolutional neural networks for transient candidate vetting in large-scale surveys , 2017, 1708.08947.

[172]  California Institute of Technology,et al.  Discovery of 36 eclipsing EL CVn binaries found by the Palomar Transient Factory , 2017, 1712.06507.

[173]  Brett Naul,et al.  A recurrent neural network for classification of unevenly sampled variable stars , 2017, Nature Astronomy.

[174]  T. Cantat-Gaudin,et al.  A new method for unveiling open clusters in Gaia , 2018, Astronomy & Astrophysics.

[175]  Y. Wang,et al.  Carbon Stars Identified from LAMOST DR4 Using Machine Learning , 2017, 1712.07784.

[176]  Carlos Jaschek Data Growth in Astronomy , 1978 .

[177]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[178]  Ping Guo,et al.  A new automated spectral feature extraction method and its application in spectral classification and defective spectra recovery , 2017 .

[179]  Thomas Hofmann,et al.  Fast cosmic web simulations with generative adversarial networks , 2018, Computational Astrophysics and Cosmology.

[180]  M. Hamuy,et al.  Asteroids in the High Cadence Transient Survey , 2018, 1806.03352.

[181]  D. Poznanski,et al.  The weirdest SDSS galaxies: results from an outlier detection algorithm , 2016, 1611.07526.

[182]  Joana Frontera-Pons,et al.  Unsupervised feature-learning for galaxy SEDs with denoising autoencoders , 2017, 1705.05620.

[183]  M. Shara,et al.  A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15 Seconds of Arc (lspm Catalog -north) , 2004 .

[184]  S. Burke-Spolaor,et al.  The High Time Resolution Universe survey – XIV. Discovery of 23 pulsars through GPU-accelerated reprocessing , 2018, Monthly Notices of the Royal Astronomical Society.

[185]  Abhishek Das,et al.  Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[186]  F. S. Guzman,et al.  Characterizing the velocity of a wandering black hole and properties of the surrounding medium using convolutional neural networks , 2018, 1803.06060.

[187]  Stephen S. Murray,et al.  ADS 2.0: new architecture, API and services , 2015, ArXiv.

[188]  N. R. Napolitano,et al.  Evolution of galaxy size–stellar mass relation from the Kilo-Degree Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[189]  Kyle A. Pearson,et al.  Searching for exoplanets using artificial intelligence , 2017, Monthly Notices of the Royal Astronomical Society.

[190]  Adam D. Myers,et al.  The Clustering of High-redshift (2.9 ≤ z ≤ 5.1) Quasars in SDSS Stripe 82 , 2017, 1712.03128.

[191]  Michael S. Bessell,et al.  SkyMapper and the Southern Sky Survey , 2008 .

[192]  Roman Zitlau,et al.  Feature importance for machine learning redshifts applied to SDSS galaxies , 2014, 1410.4696.

[193]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[194]  David J Armstrong,et al.  Automatic vetting of planet candidates from ground based surveys: Machine learning with NGTS , 2018, 1805.07089.

[195]  Robert Greimel,et al.  IPHAS discoveries of young stars towards Cyg OB2 and its southern periphery , 2008, 0803.2840.

[196]  Bruce A. Bassett,et al.  Painting galaxies into dark matter haloes using machine learning , 2017, 1712.03255.

[197]  Ivan K. Baldry,et al.  the-wizz: clustering redshift estimation for everyone , 2016, 1609.09085.

[198]  F. Jankowski,et al.  Erratum: FRB microstructure revealed by the real-time detection of FRB170827 , 2018, Monthly Notices of the Royal Astronomical Society.

[199]  B. Yanny,et al.  Dark Energy Survey Year 1 results: measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1 , 2017, Monthly Notices of the Royal Astronomical Society.

[200]  Xiaohui Fan,et al.  The Extremely Luminous Quasar Survey in the SDSS Footprint. I. Infrared-based Candidate Selection , 2017, 1712.01205.

[201]  L. Valenzuela,et al.  Unsupervised classification of variable stars , 2018, 1801.09723.

[202]  Raphael Sznitman,et al.  Supervised machine learning for analysing spectra of exoplanetary atmospheres , 2018, Nature Astronomy.

[203]  Jim Gray,et al.  2020 Computing: Science in an exponential world , 2006, Nature.

[204]  Nestor J. Hernandez Marcano,et al.  Using Machine Learning Methods to Forecast if Solar Flares Will Be Associated with CMEs and SEPs , 2018, The Astrophysical Journal.

[205]  K. Sokolovsky,et al.  Machine learning search for variable stars , 2017, 1710.07290.

[206]  Satoshi Miyazaki,et al.  Machine-learning-based real-bogus system for the HSC-SSP moving object detection pipeline , 2017, 1704.06413.

[207]  Michelle Lochner,et al.  DeepSource: Point Source Detection using Deep Learning , 2018, ArXiv.

[208]  R. E. Griffiths,et al.  USING OBLIQUE DECISION TREES FOR THE MORPHOLOGICAL CLASSIFICATION OF GALAXIES , 1996 .

[209]  Haimin Wang,et al.  Predicting Solar Flares Using SDO/HMI Vector Magnetic Data Products and the Random Forest Algorithm , 2017, 1706.02422.

[210]  Rafael Garcia-Dias,et al.  Machine learning in APOGEE: Unsupervised spectral classification with K-means , 2018, ArXiv.

[211]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[212]  Sahar Shahaf,et al.  Probabilistic Random Forest: A Machine Learning Algorithm for Noisy Data Sets , 2018, The Astronomical Journal.

[213]  Iftach Sadeh,et al.  ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning , 2015, 1507.00490.

[214]  Razvan Ciuca,et al.  A Bayesian framework for cosmic string searches in CMB maps , 2017, 1706.04131.

[215]  Ann I. Zabludoff,et al.  Identifying Tidal Disruption Events via Prior Photometric Selection of Their Preferred Hosts , 2018, The Astrophysical Journal.

[216]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[217]  Santiago,et al.  A CATALOG OF VISUAL-LIKE MORPHOLOGIES IN THE 5 CANDELS FIELDS USING DEEP LEARNING , 2015, 1509.05429.

[218]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[219]  S. I. Gopasyuk,et al.  On the Forecasting of Solar Flares , 1964 .

[220]  Jingchang Pan,et al.  Searching for Hot Subdwarf Stars from the LAMOST Spectra. I. Method , 2017 .

[221]  Yude Bu,et al.  Searching for Hot Subdwarf Stars from the LAMOST Spectra. III. Classification of Hot Subdwarf Stars in the Fourth Data Release of LAMOST Using a Deep Learning Method , 2018, The Astrophysical Journal.

[222]  Risa H. Wechsler,et al.  Modeling the Impact of Baryons on Subhalo Populations with Machine Learning , 2017, The Astrophysical Journal.

[223]  Joshua S. Speagle,et al.  Deriving photometric redshifts using fuzzy archetypes and self-organizing maps – II. Implementation , 2017 .

[224]  Joshua S. Speagle,et al.  Deriving Photometric Redshifts using Fuzzy Archetypes and Self-Organizing Maps. II. Comparing Sampling Techniques Using Mock Data , 2015, 1510.08080.

[225]  Manolis K. Georgoulis,et al.  Forecasting Solar Flares Using Magnetogram-based Predictors and Machine Learning , 2018, 1801.05744.

[226]  C. Heymans,et al.  LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.

[227]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[228]  A. Hopkins,et al.  Science with the Australian Square Kilometre Array Pathfinder , 2007, Publications of the Astronomical Society of Australia.

[229]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[230]  Kyle W. Willett,et al.  Integrating human and machine intelligence in galaxy morphology classification tasks , 2018, 1802.08713.

[231]  Michelle Lochner,et al.  Machine learning cosmological structure formation , 2018, Monthly Notices of the Royal Astronomical Society.

[232]  Robert J. Brunner,et al.  SOMz: photometric redshift PDFs with self organizing maps and random atlas , 2013, ArXiv.

[233]  I. Georgantopoulos,et al.  XMMPZCAT: A catalogue of photometric redshifts for X-ray sources , 2018, Astronomy & Astrophysics.

[234]  R. Utama,et al.  Refining mass formulas for astrophysical applications: A Bayesian neural network approach , 2017, 1704.06632.

[235]  A. K. Qin,et al.  An Extended Catalog of Galaxy–Galaxy Strong Gravitational Lenses Discovered in DES Using Convolutional Neural Networks , 2019, The Astrophysical Journal Supplement Series.

[236]  Rainer Beck,et al.  Square kilometre array , 2010, Scholarpedia.

[237]  N. R. Napolitano,et al.  Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks , 2017, 1702.07675.

[238]  David J Armstrong,et al.  K2 variable catalogue – II. Machine learning classification of variable stars and eclipsing binaries in K2 fields 0–4 , 2015, 1512.01246.

[239]  Michael J. Kurtz,et al.  The NASA Astrophysics Data System: Overview , 2000, astro-ph/0002104.

[240]  Yann LeCun,et al.  Transforming Neural-Net Output Levels to Probability Distributions , 1990, NIPS.

[241]  Satoshi Miyazaki,et al.  Searching for Moving Objects in HSC-SSP: Pipeline and Preliminary Results , 2017, 1705.01722.

[242]  L. Rimoldini,et al.  Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps , 2017, 1702.06296.

[243]  H. D. S'anchez,et al.  Improving galaxy morphologies for SDSS with Deep Learning , 2017, 1711.05744.

[244]  Xin Xin,et al.  Automated detection of new impact sites on Martian surface from HiRISE images , 2017 .

[245]  R. J. Brunner,et al.  TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.

[246]  C. J. Wolfson,et al.  The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) , 2011 .

[247]  Ciro Donalek,et al.  Machine-assisted discovery of relationships in astronomy , 2013, 1302.5129.

[248]  Y. Wadadekar Estimating Photometric Redshifts Using Support Vector Machines , 2004, astro-ph/0412005.

[249]  Wojciech Samek,et al.  Methods for interpreting and understanding deep neural networks , 2017, Digit. Signal Process..

[250]  M. Huertas-Company,et al.  Deep Learning Identifies High-z Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range , 2018, 1804.07307.

[251]  S. Odewahn,et al.  Automated star/galaxy discrimination with neural networks , 1992 .

[252]  S. Desai,et al.  Separation of pulsar signals from noise using supervised machine learning algorithms , 2017, Astron. Comput..

[253]  Sahar Shahaf,et al.  Detecting outliers and learning complex structures with large spectroscopic surveys - a case study with APOGEE stars , 2017, 1711.00022.

[254]  John J. Oh,et al.  Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data , 2013, 1303.6984.

[255]  J. Powell,et al.  Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data , 2016, 1609.06262.

[256]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[257]  O. Miettinen Protostellar classification using supervised machine learning algorithms , 2018, Astrophysics and Space Science.

[258]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[259]  Ciro Donalek,et al.  Real-time data mining of massive data streams from synoptic sky surveys , 2016, Future Gener. Comput. Syst..

[260]  Massimo Brescia,et al.  METAPHOR: a machine-learning-based method for the probability density estimation of photometric redshifts , 2016, 1611.02162.

[261]  Carlos Jaschek,et al.  INFORMATION PROBLEMS IN ASTROPHYSICS , 1968 .

[262]  Ray P. Norris,et al.  Discovering the Unexpected in Astronomical Survey Data , 2016, Publications of the Astronomical Society of Australia.

[263]  L. Rimoldini,et al.  Gaia eclipsing binary and multiple systems. Two-Gaussian models applied to OGLE-III eclipsing binary light curves in the Large Magellanic Cloud , 2017, 1703.10597.

[264]  Dominik Bomans,et al.  Sharpening up Galactic all-sky maps with complementary data , 2018, Astronomy & Astrophysics.

[265]  T. Kuntzer,et al.  Detecting unresolved binary stars in Euclid VIS images , 2017, 1708.08468.

[266]  Bo Liang,et al.  Automatic Detection of Sunspots on Full-disk Solar Images Using the Simulated Annealing Genetic Method , 2018, Publications of the Astronomical Society of the Pacific.

[267]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[268]  David C. Koo Overview - Photometric Redshifts: A Perspective from an Old-Timer[!] on their Past, Present, and Potential , 1999 .

[269]  Elena Sabbi,et al.  Hubble Tarantula Treasury Project - VI. Identification of pre-main-sequence stars using machine-learning techniques , 2018, 1805.07157.

[270]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[271]  S. C. Keller,et al.  The SkyMapper Telescope and The Southern Sky Survey , 2007, Publications of the Astronomical Society of Australia.

[272]  S. Pyrzas,et al.  TSARDI: a Machine Learning data rejection algorithm for transiting exoplanet light curves , 2018, Monthly Notices of the Royal Astronomical Society.

[273]  Kazunori Ogohara,et al.  Segmentation of dust storm areas on Mars images using principal component analysis and neural network , 2019, Progress in Earth and Planetary Science.

[274]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[275]  J. Hessels,et al.  Single-pulse classifier for the LOFAR Tied-Array All-sky Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[276]  A. Fontana,et al.  Photometric redshifts with the Multilayer Perceptron Neural Network: Application to the HDF-S and SDSS , 2003, astro-ph/0312064.

[277]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[278]  Junyu Liu,et al.  Artificial neural network in cosmic landscape , 2017, 1707.02800.

[279]  E. Pueschel,et al.  Improved γ/hadron separation for the detection of faint γ-ray sources using boosted decision trees , 2017, 1701.06928.

[280]  Lior Shamir,et al.  A hybrid approach to machine learning annotation of large galaxy image databases , 2018, Astron. Comput..

[281]  J. Dickey,et al.  Calibrating the HISA temperature: Measuring the temperature of the Riegel–Crutcher cloud , 2018, Monthly Notices of the Royal Astronomical Society.

[282]  Christian Igel,et al.  Improving the performance of photometric regression models via massive parallel feature selection , 2014 .