Meta-Parameter Free Unsupervised Sparse Feature Learning

We propose a meta-parameter free, off-the-shelf, simple and fast unsupervised feature learning algorithm, which exploits a new way of optimizing for sparsity. Experiments on CIFAR-10, STL-10 and UCMerced show that the method achieves the state-of-the-art performance, providing discriminative features that generalize well.

[1]  Yoshua Bengio,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2010, AISTATS.

[2]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[3]  Yoshua Bengio,et al.  Exploring Strategies for Training Deep Neural Networks , 2009, J. Mach. Learn. Res..

[4]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[5]  Honglak Lee,et al.  Learning Invariant Representations with Local Transformations , 2012, ICML.

[6]  Geoffrey E. Hinton A Practical Guide to Training Restricted Boltzmann Machines , 2012, Neural Networks: Tricks of the Trade.

[7]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[8]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[9]  Marc'Aurelio Ranzato,et al.  Efficient Learning of Sparse Representations with an Energy-Based Model , 2006, NIPS.

[10]  Honglak Lee,et al.  Sparse deep belief net model for visual area V2 , 2007, NIPS.

[11]  Shawn D. Newsam,et al.  Bag-of-visual-words and spatial extensions for land-use classification , 2010, GIS '10.

[12]  E. Oja,et al.  Independent Component Analysis , 2013 .

[13]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[14]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Anil M. Cheriyadat,et al.  Unsupervised Feature Learning for Aerial Scene Classification , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[17]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[18]  D. Tolhurst,et al.  Characterizing the sparseness of neural codes , 2001, Network.

[19]  T. Blumensath,et al.  On the Difference Between Orthogonal Matching Pursuit and Orthogonal Least Squares , 2007 .

[20]  Quoc V. Le,et al.  ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning , 2011, NIPS.

[21]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[22]  Jiquan Ngiam,et al.  Sparse Filtering , 2011, NIPS.

[23]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[24]  Y-Lan Boureau,et al.  Learning Convolutional Feature Hierarchies for Visual Recognition , 2010, NIPS.

[25]  Rajat Raina,et al.  Self-taught learning: transfer learning from unlabeled data , 2007, ICML '07.

[26]  Matthieu Cord,et al.  Unsupervised and Supervised Visual Codes with Restricted Boltzmann Machines , 2012, ECCV.

[27]  Klaus-Robert Müller,et al.  Efficient BackProp , 2012, Neural Networks: Tricks of the Trade.

[28]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[29]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Honglak Lee,et al.  An Analysis of Single-Layer Networks in Unsupervised Feature Learning , 2011, AISTATS.

[31]  Andrew Y. Ng,et al.  The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization , 2011, ICML.

[32]  Yoshua Bengio,et al.  Greedy Layer-Wise Training of Deep Networks , 2006, NIPS.

[33]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[34]  Tom Schaul,et al.  No more pesky learning rates , 2012, ICML.