Gabor domain optical coherence microscopy

Optical Coherence Microscopy (OCM) utilizes a higher NA microscope objective in the sample arm of a low coherence interferometer than in Optical Coherence Tomography (OCT) to achieve axially and laterally high-resolution optical tomographic images. An increase in NA, however, leads to a dramatically decreased depth of focus (DOF), and hence shortens the imaging depth range so that high lateral resolution is maintained only within a small depth region around the focal plane. One solution to increase the depth of imaging while keeping a high lateral resolution is dynamic-focusing. Utilizing the voltage controlled refocus capability of a liquid lens, we have recently presented a solution for invariant high-resolution imaging using the liquid lens embedded within a fixed optics hand-held custom microscope. An implementation of the microscope for optical imaging using a broadband light source centered at 800 nm has been completed. Subsequently, we have developed Gabor-Domain Optical Coherence Microscopy (GD-OCM) that utilizes the high speed imaging of spectral domain OCT, the high lateral resolution of OCM, and the ability of real time refocusing of our custom design variable focus objective. In this paper, we provide an overview of the technology developed and highlight resent results. We also provide linkages to current related research in our group all directed at finding expedient pathways to the clinical settings.

[1]  J. Izatt,et al.  Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle. , 2002, Optics express.

[2]  B R Masters,et al.  Multiphoton Excitation Microscopy of In Vivo Human Skin: Functional and Morphological Optical Biopsy Based on Three‐Dimensional Imaging, Lifetime Measurements and Fluorescence Spectroscopy a , 1998, Annals of the New York Academy of Sciences.

[3]  Daniel L Marks,et al.  Interferometric Synthetic Aperture Microscopy , 2007, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[4]  G. Argenziano,et al.  Impact of dermoscopy on the clinical management of pigmented skin lesions. , 2002, Clinics in dermatology.

[5]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[6]  E. Steels,et al.  Evaluation of extensive initial staging procedure in intermediate/high‐risk melanoma patients , 2005, Journal of the European Academy of Dermatology and Venereology : JEADV.

[7]  F. Mirabella Modern techniques in applied molecular spectroscopy , 1998 .

[8]  Kye S. Lee,et al.  Extended Focus Range High Resolution Endoscopic Optical Coherence Tomography , 2008 .

[9]  S. Menzies An atlas of surface microscopy of pigmented skin lesions , 1996 .

[10]  David N. Batchelder,et al.  Development of a scanning near-field optical probe for localised Raman spectroscopy , 1995 .

[11]  B. Querleux,et al.  In vivo high-resolution MR imaging of the skin in a whole-body system at 1.5 T. , 1990, Radiology.

[12]  Kye-Sung Lee,et al.  Sub-cellular resolution imaging with Gabor domain optical coherence microscopy , 2010, BiOS.

[13]  Nicholas George,et al.  Extended depth of field using the logarithmic asphere , 2003, International Commission for Optics.

[14]  Zhongping Chen,et al.  GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking. , 2006, Optics express.

[15]  H. Wulf,et al.  Distinctive Molecular Abnormalities in Benign and Malignant Skin Lesions: Studies by Raman Spectroscopy , 1997, Photochemistry and photobiology.

[16]  B R Masters,et al.  Two-photon excitation fluorescence microscopy. , 2000, Annual review of biomedical engineering.

[17]  N Tsurumachi,et al.  Wide-field optical coherence tomography: imaging of biological tissues. , 2002, Applied optics.

[18]  A. Marghoob,et al.  Predicting ten‐year survival of patients with primary cutaneous melanoma , 1997, Cancer.

[19]  H. Edwards,et al.  Raman Microscopy: Developments and Applications , 1996 .

[20]  V. Ruocco,et al.  Tzanck smear, an old test for the new millennium: when and how , 1999, International journal of dermatology.

[21]  G. Zonios,et al.  Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. , 2001, The Journal of investigative dermatology.

[22]  Zhihua Ding,et al.  High-resolution optical coherence tomography over a large depth range with an axicon lens. , 2002, Optics letters.

[23]  Kye-Sung Lee,et al.  High resolution axicon-based endoscopic FD OCT imaging with a large depth range , 2010, BiOS.

[24]  Daniel L Marks,et al.  Inverse scattering for optical coherence tomography. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  G. Argenziano,et al.  Clinical and dermatoscopic criteria for the preoperative evaluation of cutaneous melanoma thickness. , 1999, Journal of the American Academy of Dermatology.

[26]  Anthony J. Durkin,et al.  In vivo Fluorescence Spectroscopy of Nonmelanoma Skin Cancer¶ , 2001, Photochemistry and Photobiology.

[27]  Kye-Sung Lee,et al.  Two-photon microscopy with dynamic focusing objective using a liquid lens , 2010, BiOS.

[28]  S. Jacques,et al.  Imaging superficial tissues with polarized light , 2000, Lasers in surgery and medicine.

[29]  Jeffrey C. Bamber,et al.  Methodology for clinical investigation. , 2004 .

[30]  J. Fujimoto,et al.  Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. , 2006, Optics letters.

[31]  Josef Smolle,et al.  EARLY DIAGNOSIS OF MALIGNANT MELANOMA BY SURFACE MICROSCOPY , 1987, The Lancet.

[32]  Jannick P Rolland,et al.  Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range. , 2008, Optics letters.

[33]  R. Webb,et al.  In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. , 1995, The Journal of investigative dermatology.

[34]  M Rajadhyaksha,et al.  Topographic variations in normal skin, as viewed by in vivo reflectance confocal microscopy. , 2001, The Journal of investigative dermatology.

[35]  Yasemin Oram,et al.  Diagnostic value of cytology in basal cell and squamous cell carcinomas , 1997, International journal of dermatology.

[36]  N Kollias,et al.  Polarized light photography in the evaluation of photoaging. , 1995, Journal of the American Academy of Dermatology.

[37]  H. Barr,et al.  Raman spectroscopy for identification of epithelial cancers. , 2004, Faraday discussions.

[38]  B. Rigas,et al.  Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G S Kino,et al.  Mirau correlation microscope. , 1990, Applied optics.

[40]  Renato Marchesini,et al.  Reflectance imaging spectroscopy: possible aid in the clinical diagnosis of melanoma , 1995, Photonics West.

[41]  Michel Manfait,et al.  Discriminating nevus and melanoma on paraffin-embedded skin biopsies using FTIR microspectroscopy. , 2005, Biochimica et biophysica acta.

[42]  R. Marks,et al.  The Epidemiology of Non‐Melanoma Skin Cancer: Who, Why and What Can We Do about It , 1995, The Journal of dermatology.

[43]  N. Ramanujam Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. , 2000, Neoplasia.

[44]  H. Tagami,et al.  Number of cell layers of the stratum corneum in normal skin – relationship to the anatomical location on the body, age, sex and physical parameters , 1999, Archives of Dermatological Research.

[45]  Joseph M. Schmitt,et al.  An optical coherence microscope with enhanced resolving power , 1997 .

[46]  Jessica C Ramella-Roman,et al.  Imaging skin pathology with polarized light. , 2002, Journal of biomedical optics.

[47]  Susumu Sato,et al.  Optical Properties of Liquid Crystal Lens of Any Size , 2002 .

[48]  A. Marghoob,et al.  Management of dysplastic nevi: a survey of fellows of the American Academy of Dermatology. , 2002, Journal of the American Academy of Dermatology.

[49]  M. Pierce,et al.  Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. , 2004, Journal of biomedical optics.

[50]  G. Jemec,et al.  Diagnosis of Nonmelanoma Skin Cancer/Keratinocyte Carcinoma: A Review of Diagnostic Accuracy of Nonmelanoma Skin Cancer Diagnostic Tests and Technologies , 2007, Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.].

[51]  Bryan Edward Cole,et al.  Terahertz pulse imaging in reflection geometry of skin tissue using time-domain analysis techniques , 2002, SPIE BiOS.

[52]  R. Webb,et al.  In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. , 1999, The Journal of investigative dermatology.

[53]  V. Mahajan Optical Imaging and Aberrations , 1998 .

[54]  S. Lodha,et al.  Discordance in the histopathologic diagnosis of difficult melanocytic neoplasms in the clinical setting , 2008, Journal of cutaneous pathology.

[55]  J. Jones,et al.  Scanning acoustic microscopy of neoplastic and inflammatory cutaneous tissue specimens. , 1991, The Journal of investigative dermatology.

[56]  K. Badizadegan,et al.  Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus. , 2001, Gastroenterology.

[57]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[58]  D. Melcher,et al.  The use of cytology in the diagnosis of basal cell carcinoma , 1992, The British journal of dermatology.

[59]  Edmund H. Linfield,et al.  Applications of terahertz (THz) technology to medical imaging , 1999, Industrial Lasers and Inspection.

[60]  R J Ott,et al.  Spectrophotometric assessment of pigmented skin lesions: methods and feature selection for evaluation of diagnostic performance. , 2000, Physics in medicine and biology.

[61]  Kye-Sung Lee,et al.  Full-range spectral domain Doppler optical coherence tomography , 2010, BiOS.

[62]  T. Gambichler,et al.  In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site. , 2006, Journal of dermatological science.

[63]  Peter Malcolm Moran,et al.  Fluidic lenses with variable focal length , 2006 .

[64]  Daniel L Marks,et al.  Inverse scattering for frequency-scanned full-field optical coherence tomography. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[65]  G. Gelikonov,et al.  In vivo optical coherence tomography imaging of human skin: norm and pathology , 2000, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[66]  J G Fujimoto,et al.  High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging. , 2003, Optics letters.

[67]  Sharifi Nourieh,et al.  Cytodiagnosis of Cutaneous Basal and Squamous Cell Carcinoma , 2007 .

[68]  M. Diem,et al.  A decade of vibrational micro-spectroscopy of human cells and tissue (1994-2004). , 2004, The Analyst.

[69]  R Marchesini,et al.  In vivo SPECTROPHOTOMETRIC EVALUATION OF NEOPLASTIC AND NON‐NEOPLASTIC SKIN PIGMENTED LESIONS. II: DISCRIMINANT ANALYSIS BETWEEN NEVUS AND MELANOMA , 1992, Photochemistry and photobiology.

[70]  Ashfaq A Marghoob,et al.  Instruments and new technologies for the in vivo diagnosis of melanoma. , 2003, Journal of the American Academy of Dermatology.

[71]  P. Prasad,et al.  Confocal enhanced optical coherence tomography for nondestructive evaluation of paints and coatings. , 1999, Optics letters.

[72]  Jon Denis Holmes,et al.  Image blending and speckle noise reduction in multi-beam OCT , 2009, BiOS.

[73]  A E Murray,et al.  A routine method for the quantification of physical change in melanocytic naevi using digital image processing. , 1988, The Journal of audiovisual media in medicine.

[74]  J. Parrish,et al.  New concepts in therapeutic photomedicine: photochemistry, optical targeting and the therapeutic window. , 1981, The Journal of investigative dermatology.

[75]  D. Miller,et al.  Determining skin thickness with pulsed ultra sound. , 1979, The Journal of investigative dermatology.

[76]  W. McKinney,et al.  Synchrotron-Based FTIR Spectromicroscopy: Cytotoxicity and Heating Considerations , 2003, Journal of biological physics.

[77]  Sue E. Huether,et al.  Pathophysiology: The Biologic Basis for Disease in Adults and Children , 1990 .

[78]  B. Berge,et al.  Variable focal lens controlled by an external voltage: An application of electrowetting , 2000 .

[79]  R. Huber,et al.  Subharmonic Fourier domain mode locking. , 2009, Optics letters.

[80]  I. Alex Vitkin,et al.  Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror , 2004 .

[81]  R. Alfano,et al.  Optical polarization imaging. , 1997, Applied optics.

[82]  D. Davies,et al.  Optical coherence-domain reflectometry: a new optical evaluation technique. , 1987, Optics letters.

[83]  L From,et al.  A 40-100 MHz B-scan ultrasound backscatter microscope for skin imaging. , 1995, Ultrasound in medicine & biology.

[84]  P. Simpson,et al.  Statistical methods in cancer research , 2001, Journal of surgical oncology.

[85]  Jun Zhang,et al.  Dynamically focused optical coherence tomography for endoscopic applications , 2005 .

[86]  L. Auger The Journal of the Acoustical Society of America , 1949 .

[87]  S. L. Jacques,et al.  In vivo fluorescence spectroscopy and imaging of human skin tumours , 1994, Lasers in Medical Science.

[88]  K Wolff,et al.  Epiluminescence microscopy of small pigmented skin lesions: short-term formal training improves the diagnostic performance of dermatologists. , 1997, Journal of the American Academy of Dermatology.

[89]  Vrushali R. Korde,et al.  Using optical coherence tomography to evaluate skin sun damage and precancer , 2007, Lasers in surgery and medicine.

[90]  B. Wilson,et al.  A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. , 1992, Medical physics.

[91]  Kye-Sung Lee,et al.  Quantification of resolution for a dynamic focusing OCM microscope , 2009, BiOS.

[92]  G. Zonios,et al.  Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo. , 1999, Applied optics.

[93]  Gniadecka,et al.  Quantitative evaluation of chronological ageing and photoageing in vivo: studies on skin echogenicity and thickness , 1998, The British journal of dermatology.

[94]  R Marchesini,et al.  Multispectral imaging approach in the diagnosis of cutaneous melanoma: potentiality and limits. , 2000, Physics in medicine and biology.

[95]  Xingde Li,et al.  Continuous focus tracking for real-time optical coherence tomography. , 2005, Optics letters.

[96]  Michael S. Feld,et al.  Imaging human epithelial properties with polarized light-scattering spectroscopy , 2001, Nature Medicine.

[97]  M. Schwarz,et al.  [Ranking of 20 MHz sonography of malignant melanoma and pigmented lesions in routine diagnosis]. , 1999, Ultraschall in der Medizin.

[98]  B. Fornage,et al.  Imaging of the skin with 20-MHz US. , 1993, Radiology.

[99]  A Wang,et al.  White-light scanning fiber Michelson interferometer for absolute position-distance measurement. , 1995, Optics letters.

[100]  R. Lew,et al.  Screening for melanoma/skin cancer: theoretic and practical considerations. , 1989, Journal of the American Academy of Dermatology.

[101]  Jun Q. Lu,et al.  Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm , 2006, Physics in medicine and biology.

[102]  P. Steeg Tumor metastasis: mechanistic insights and clinical challenges , 2006, Nature Medicine.

[103]  Jay R. Knutson,et al.  Spatial localization using interfering photon density waves: contrast enhancement and limitations , 1993, Photonics West - Lasers and Applications in Science and Engineering.

[104]  L Burke,et al.  Identification of cervical intraepithelial neoplasia (CIN) using UV‐excited fluorescence and diffuse‐reflectance tissue spectroscopy , 2001, Lasers in surgery and medicine.

[105]  Brett E. Bouma,et al.  In vivo cellular optical coherence tomography imaging , 1998, Nature Medicine.

[106]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[107]  K. Takada,et al.  New measurement system for fault location in optical waveguide devices based on an interferometric technique. , 1987, Applied optics.

[108]  J. Welzel Optical coherence tomography in dermatology: a review , 2001, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[109]  Renato Marchesini,et al.  Automated melanoma detection with a novel multispectral imaging system: results of a prospective study , 2005, Physics in medicine and biology.

[110]  Majid Ezzati,et al.  Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors , 2005, The Lancet.

[111]  V. Sondak,et al.  Recent Advances in Melanoma Staging and Therapy , 1999, Annals of Surgical Oncology.

[112]  Hans Christian Wulf,et al.  Ultrasonographic subepidermal low‐echogenic band, dependence of age and body site , 2004, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[113]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[114]  Michael S. Feld,et al.  Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ , 1999 .

[115]  Kevin Paul Thompson Aberration fields in tilted and decentered optical systems , 1980 .

[116]  J. Rolland,et al.  High Resolution Ocular Surface OCT to Directly Measure Tear Film Thickness in Human Eyes , 2010 .

[117]  Michael B. Wallace,et al.  Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution , 1998 .

[118]  N. Nishizawa,et al.  Ultrahigh resolution optical coherence tomography , 2012, 2012 17th Opto-Electronics and Communications Conference.

[119]  A. Marghoob,et al.  In vivo reflectance confocal microscopy imaging of melanocytic skin lesions: consensus terminology glossary and illustrative images. , 2007, Journal of the American Academy of Dermatology.

[120]  Ian W. Hunter,et al.  VOLUMETRIC RAMAN MICROSCOPY THROUGH A TURBID MEDIUM , 1996 .

[121]  Jannick P. Rolland,et al.  Invariant high resolution optical skin imaging , 2007, SPIE BiOS.

[122]  J. Fujimoto,et al.  Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. , 2001, Optics letters.

[123]  V. Rich Personal communication , 1989, Nature.

[124]  P. Carroll,et al.  Detection of locally recurrent prostate cancer after cryosurgery: evaluation by transrectal ultrasound, magnetic resonance imaging, and three-dimensional proton magnetic resonance spectroscopy. , 1996, Urology.

[125]  H. Heise,et al.  Optical diffuse reflectance accessory for measurements of skin tissue by near-infrared spectroscopy. , 1995, Applied optics.

[126]  A. Lim,et al.  Imaging the skin , 2003, The Australasian journal of dermatology.

[127]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[128]  De-Ying Zhang,et al.  Fluidic adaptive lens with high focal length tunability , 2003 .

[129]  J P Rolland,et al.  Invariant resolution dynamic focus OCM based on liquid crystal lens. , 2007, Optics express.

[130]  E. Linfield,et al.  Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. , 2002, Physics in medicine and biology.

[131]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[132]  D T Moore,et al.  Design of a gradient-index photographic objective. , 1982, Applied optics.

[133]  A Rollins,et al.  In vivo video rate optical coherence tomography. , 1998, Optics express.

[134]  F. S. Foster,et al.  Ultrasound backscatter microscopy images the internal structure of living tumour spheroids , 1987, Nature.

[135]  A. Neuhold,et al.  MRI evaluation of pigmented skin tumors. Preliminary study. , 1989, Investigative radiology.

[136]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[137]  J. Fujimoto,et al.  Optical coherence microscopy in scattering media. , 1994, Optics letters.

[138]  Klaus-Peter Wilhelm,et al.  Bioengineering of the skin : skin surface imaging and analysis , 1997 .

[139]  C. Clemente,et al.  In vivo SPECTROPHOTOMETRIC EVALUATION OF NEOPLASTIC AND NONNEOPLASTIC SKIN PIGMENTED LESIONS. III. CCD CAMERA‐BASED REFLECTANCE IMAGING , 1995, Photochemistry and photobiology.

[140]  Michael Pircher,et al.  En-face scanning optical coherence tomography with ultra-high resolution for material investigation. , 2005, Optics express.

[141]  R Marchesini,et al.  In vivo SPECTROPHOTOMETRIC EVALUATION OF NEOPLASTIC AND NON‐NEOPLASTIC SKIN PIGMENTED LESIONS–I. REFLECTANCE MEASUREMENTS , 1991, Photochemistry and photobiology.

[142]  Christopher J. Frank,et al.  Raman spectroscopy of normal and diseased human breast tissues. , 1995, Analytical chemistry.

[143]  Stefan Keller,et al.  NIR Raman spectroscopy in medicine and biology: results and aspects , 1999 .

[144]  M. Oliviero,et al.  Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study. , 2001, Journal of the American Academy of Dermatology.

[145]  J. Mourant,et al.  Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. , 1997, Physics in medicine and biology.

[146]  J. Schmitt,et al.  Use of polarized light to discriminate short-path photons in a multiply scattering medium. , 1992, Applied optics.

[147]  L. K. Hansen,et al.  Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue. , 2004, The Journal of investigative dermatology.

[148]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.

[149]  I J Bigio,et al.  Spectroscopic diagnosis of bladder cancer with elastic light scattering , 1995, Lasers in surgery and medicine.

[150]  M. Moncrieff,et al.  A simple classification of the resolution and depth of imaging systems for pigmented skin lesions , 2002, Melanoma research.

[151]  E DE SALAMANCA,et al.  Pathogenesis of Cancer , 1934, Boletin cultural e informativo - Consejo General de Colegios Medicos de Espana.

[152]  P Altmeyer,et al.  Improved resolution of magnetic resonance microscopy in examination of skin tumors. , 1996, The Journal of investigative dermatology.

[153]  M. Rajadhyaksha,et al.  Confocal scanning laser microscopy of benign and malignant melanocytic skin lesions in vivo. , 2001, Journal of the American Academy of Dermatology.

[154]  Anthony J. Durkin,et al.  In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy. , 2008, Journal of biomedical optics.

[155]  Hugh Barr,et al.  Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications , 2008, SPIE BiOS.

[156]  Michele Follen,et al.  Reflectance spectroscopy for in vivo detection of cervical precancer. , 2002, Journal of biomedical optics.

[157]  D J Ruiter,et al.  Transition of horizontal to vertical growth phase melanoma is accompanied by induction of vascular endothelial growth factor expression and angiogenesis , 1997, Melanoma research.

[158]  James G Fujimoto,et al.  Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. , 2005, Optics express.

[159]  D I McLean,et al.  Trends in basal cell carcinoma, squamous cell carcinoma, and melanoma of the skin from 1973 through 1987. , 1990, Journal of the American Academy of Dermatology.

[160]  A. Wennberg,et al.  In vivo detection of basal cell carcinoma using imaging spectroscopy. , 1999, Acta dermato-venereologica.

[161]  Georgios N Stamatas,et al.  Optical non-invasive approaches to diagnosis of skin diseases. , 2002, The journal of investigative dermatology. Symposium proceedings.

[162]  P. Bailin,et al.  Magnetic resonance imaging of cutaneous melanocytic lesions. , 1989, The Journal of dermatologic surgery and oncology.

[163]  K Svanberg,et al.  Clinical multi-colour fluorescence imaging of malignant tumours - initial experience , 1998, Acta radiologica.

[164]  Panomsak Meemon,et al.  Gabor-based fusion technique for Optical Coherence Microscopy. , 2010, Optics express.

[165]  B. Schrader,et al.  Investigation of skin and skin lesions by NIR-FT-Raman spectroscopy , 1998 .

[166]  Bryan Edward Cole,et al.  Terahertz pulse imaging of in-vitro basal cell carcinoma samples , 2001, CLEO 2001.

[167]  Richard Mendelsohn,et al.  Infrared microspectroscopic imaging maps the spatial distribution of exogenous molecules in skin. , 2003, Journal of biomedical optics.

[168]  B L Diffey A mathematical model for ultraviolet optics in skin. , 1983, Physics in medicine and biology.

[169]  A. Fercher,et al.  Submicrometer axial resolution optical coherence tomography. , 2002, Optics letters.

[170]  Brian W. Barry,et al.  Potential applications of FT-Raman spectroscopy for dermatological diagnostics , 1995 .

[171]  Adrian Gh. Podoleanu,et al.  Perspectives of optical scanning in OCT , 2010, BiOS.

[172]  Daniel L Marks,et al.  Inverse scattering for rotationally scanned optical coherence tomography. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[173]  Nirmala Ramanujam,et al.  Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues , 2004, Annals of Surgical Oncology.

[174]  O Jolivet,et al.  In vivo hydration profile in skin layers by high-resolution magnetic resonance imaging. , 1994, Skin pharmacology : the official journal of the Skin Pharmacology Society.

[175]  A. Fercher,et al.  Dynamic coherent focus OCT with depth-independent transversal resolution , 1999 .

[176]  Thomas Dirschka,et al.  Twenty MHz B‐scan sonography for visualization and skin thickness measurement of human skin , 1994 .

[177]  Eric Clarkson,et al.  Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer. , 2005, Applied optics.

[178]  B. Wilson,et al.  In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications , 1998, Photochemistry and photobiology.

[179]  Panomsak Meemon,et al.  Assessment of a liquid lens enabled in vivo optical coherence microscope. , 2010, Applied optics.

[180]  David A. Jackson,et al.  Three dimensional OCT images from retina and skin. , 2000, Optics express.

[181]  O Jolivet,et al.  Characterization of the skin in vivo by high resolution magnetic resonance imaging: water behavior and age-related effects. , 1993, The Journal of investigative dermatology.

[182]  E. Sevick-Muraca,et al.  Quantitative optical spectroscopy for tissue diagnosis. , 1996, Annual review of physical chemistry.

[183]  H. Wulf,et al.  Diagnosis of Basal Cell Carcinoma by Raman Spectroscopy , 1997 .

[184]  Ruikang K. Wang,et al.  A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography , 2006, Physics in medicine and biology.

[185]  Jannick P Rolland,et al.  Estimation of longitudinal resolution in optical coherence imaging. , 2002, Applied optics.

[186]  E. A. Edwards,et al.  The pigments and color of living human skin , 1939 .

[187]  J M Schmitt,et al.  Subsurface imaging of living skin with optical coherence microscopy. , 1995, Dermatology.

[188]  Susumu Sato Liquid-Crystal Lens-Cells with Variable Focal Length , 1979 .

[189]  P. Bastien,et al.  In vivo epidermal thickness measurement: ultrasound vs. confocal imaging , 2004, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[190]  Max Diem,et al.  Infrared Spectroscopy of Cells and Tissues: Shining Light onto a Novel Subject , 1999 .

[191]  J. Fujimoto,et al.  Ultrahigh resolution optical coherence tomography with femtosecond Ti:sapphire laser and photonic crystal fiber , 2008, Chinese science bulletin = Kexue tongbao.

[192]  R. Marshall Infrared and ultraviolet photography in a study of the selective absorption of radiation by pigmented lesions of skin. , 1976, Medical & biological illustration.

[193]  H. Gremlich,et al.  Infrared and Raman Spectroscopy of Biological Materials , 2000 .

[194]  Peter Andretzky,et al.  Spectral Radar: Optical Coherence Tomography in the Fourier Domain , 2001 .

[195]  Surface coil for MR imaging of the skin , 1987, Magnetic resonance in medicine.

[196]  Haishan Zeng,et al.  SPECTROSCOPIC AND MICROSCOPIC CHARACTERISTICS OF HUMAN SKIN AUTOFLUORESCENCE EMISSION , 1995, Photochemistry and photobiology.

[197]  R. Anderson Polarized light examination and photography of the skin. , 1991, Archives of dermatology.

[198]  Jerry Workman Review of Process and Non-invasive Near-Infrared and Infrared Spectroscopy: 1993-1999 , 1999 .

[199]  David Huang,et al.  Handbook of optical coherence tomography. , 2003, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[200]  J Serup,et al.  High‐frequency ultrasound characterization of normal skin. Skin thickness and echographic density of 22 anatomical sites , 1995, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[201]  Bryan Edward Cole,et al.  Terahertz imaging and spectroscopy of human skin in vivo , 2001, SPIE LASE.

[202]  G. Puppels,et al.  Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. , 2003, Biophysical journal.

[203]  Haishan Zeng,et al.  Optical spectroscopy studies of diseased skin: preliminary results , 1996, Other Conferences.

[204]  H Ermert,et al.  Sonography of the skin at 100 MHz enables in vivo visualization of stratum corneum and viable epidermis in palmar skin and psoriatic plaques. , 1999, The Journal of investigative dermatology.

[205]  John H. G. M. Klaessens,et al.  A modified algorithm for continuous wave near infrared spectroscopy applied to in-vivo animal experiments and on human skin , 2008, SPIE BiOS.

[206]  Supraja Murali,et al.  Three-dimensional adaptive microscopy using embedded liquid lens. , 2009, Optics letters.

[207]  M. Binder,et al.  Epiluminescence microscopy. A useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists. , 1995, Archives of dermatology.

[208]  S. Lakhani,et al.  Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results. , 2000, Journal of biomedical optics.

[209]  Marco A. van As,et al.  Variable-focus liquid lens for portable applications , 2004, SPIE Optics + Photonics.

[210]  Jannick P. Rolland,et al.  Gabor Domain Optical Coherence Microscopy , 2008 .

[211]  Wolfgang Petrich MID-INFRARED AND RAMAN SPECTROSCOPY FOR MEDICAL DIAGNOSTICS? , 2006 .

[212]  N Kollias,et al.  Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging. , 1998, The Journal of investigative dermatology.

[213]  Shin‐Tson Wu,et al.  Tunable-focus liquid lens controlled using a servo motor. , 2006, Optics express.