On the hierarchy of conservation laws in a cellular automaton
暂无分享,去创建一个
[1] E. F. Moore. Machine Models of Self-Reproduction , 1962 .
[2] Y. Pomeau,et al. Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions , 1976 .
[3] P. A. Grillet. Semigroups: An Introduction to the Structure Theory , 1995 .
[4] J. Myhill. The converse of Moore’s Garden-of-Eden theorem , 1963 .
[5] Jarkko Kari,et al. The Most General Conservation Law for a Cellular Automaton , 2008, CSR.
[6] Enrico Formenti,et al. Number conserving cellular automata II: dynamics , 2003, Theor. Comput. Sci..
[7] A. Biryukov,et al. Some algorithmic problems for finitely defined commutative semigroups , 1967 .
[8] Marvin Minsky,et al. Computation : finite and infinite machines , 2016 .
[9] Jeffrey C. Lagarias,et al. Tiling with polyominoes and combinatorial group theory , 1990, J. Comb. Theory, Ser. A.
[10] Enrico Formenti,et al. Number-conserving cellular automata I: decidability , 2003, Theor. Comput. Sci..
[11] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.
[12] Masakazu Nasu,et al. Textile systems for endomorphisms and automorphisms of the shift , 1995 .
[13] Arch D. Robison,et al. Fast Computation of Additive Cellular Automata , 1987, Complex Syst..
[14] W. Thurston. Conway's tiling groups , 1990 .
[15] Giovanni Manzini,et al. A Complete and Efficiently Computable Topological Classification of D-dimensional Linear Cellular Automata over Zm , 1999, Theor. Comput. Sci..
[16] Siamak Taati,et al. Conservation Laws in Cellular Automata , 2009, Handbook of Natural Computing.
[17] Vincent D. Blondel,et al. On the presence of periodic configurations in Turing machines and in counter machines , 2002, Theoretical Computer Science.
[18] Jarkko Kari,et al. Linear Cellular Automata with Multiple State Variables , 2000, STACS.
[19] M. Pivato. Conservation Laws in Cellular Automata , 2001, math/0111014.
[20] Y. Pomeau. Invariant in cellular automata , 1984 .
[21] T. Hattori,et al. Additive conserved quantities in discrete-time lattice dynamical systems , 1991 .
[22] Giovanni Manzini,et al. A Complete and Efficiently Computable Topological Classification of D-dimensional Linear Cellular Automata over Zm , 1997, Theor. Comput. Sci..
[23] Jarkko Kari,et al. Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..
[24] Nobuyasu Osato,et al. Linear Cellular Automata over Z_m , 1983, J. Comput. Syst. Sci..
[25] H. Fuks,et al. Cellular automaton rules conserving the number of active sites , 1997, adap-org/9712003.
[26] Henryk Fuks,et al. A class of cellular automata equivalent to deterministic particle systems , 2002, nlin/0207047.
[27] Eric Goles Ch.,et al. On conservative and monotone one-dimensional cellular automata and their particle representation , 2004, Theor. Comput. Sci..
[28] P. Kurka. Languages, equicontinuity and attractors in cellular automata , 1997, Ergodic Theory and Dynamical Systems.
[29] Jarkko Kari,et al. Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..
[30] Takesue. Reversible cellular automata and statistical mechanics. , 1987, Physical review letters.
[31] Giovanni Manzini,et al. Lyapunov Exponents versus Expansivity and Sensitivity in Cellular Automata , 1998, J. Complex..