Facile Thermal W–W Bond Homolysis in the N-Heterocyclic Carbene Containing Tungsten Dimer [CpW(CO)2(IMe)]2

The thermal W–W bond homolysis in [CpW(CO)2(IMe)]2 (IMe = 1,3-dimethylimidazol-2-ylidene) was investigated and was found to occur to a large extent in comparison to other tungsten dimers such as [CpW(CO)3]2. CpW(CO)2(IMe)H was prepared by heating a solution of [IMeH]+[CpW(CO)2(PMe3)]−, and it exists in solution as a mixture of interconverting cis and trans isomers. The carbene rotation in CpW(CO)2(IMe)H was explored by DFT calculations, and low enthalpic barriers (<3.5 kcal mol–1) are predicted. CpW(CO)2(IMe)H has pKaMeCN = 31.5(3), and deprotonation with KH gives K+[CpW(CO)2(IMe)]− (·MeCN). Hydride abstraction from CpW(CO)2(IMe)H with Ph3C+PF6– in the presence of a coordinating ligand L (MeCN or THF) gives [CpW(CO)2(IMe)(L)]+PF6–. Electrochemical measurements on the anion [CpW(CO)2(IMe)]− in MeCN, together with digital simulations, give an E1/2 value of −1.54(2) V vs Cp2Fe+/0 for the [CpW(CO)2(IMe)]•/– couple. A thermochemical cycle provides the solution bond dissociation free energy of the W–H bond of C...

[1]  E. Walter,et al.  Comproportionation of cationic and anionic tungsten complexes having an N-heterocyclic carbene ligand to give the isolable 17-electron tungsten radical CpW(CO)2(IMes)(•). , 2011, Journal of the American Chemical Society.

[2]  D. Dubois,et al.  Comprehensive thermochemistry of W-H bonding in the metal hydrides CpW(CO)2(IMes)H, [CpW(CO)2(IMes)H](•+), and [CpW(CO)2(IMes)(H)2]+. Influence of an N-heterocyclic carbene ligand on metal hydride bond energies. , 2011, Journal of the American Chemical Society.

[3]  D. Dubois,et al.  Experimental and Digital Simulation Studies of the Electrochemical Oxidation of the Metal Anion [CpW(CO)2(IMes)]− and the 17-Electron Metal Radical CpW(CO)2(IMes)•. Kinetics and Thermodynamics of Capture and Release of MeCN by a Metal Radical and a Metal Cation , 2011 .

[4]  F. Hahn,et al.  Synthesis of NHC complexes by oxidative addition of 2-chloro-N-methylbenzimidazole. , 2011, Journal of the American Chemical Society.

[5]  Bernhard Spingler,et al.  [(C3H4N2)2Au]Cl--a bis protic gold(I)-NHC. , 2011, Dalton transactions.

[6]  F. Glorius,et al.  The measure of all rings--N-heterocyclic carbenes. , 2010, Angewandte Chemie.

[7]  J. Podlech "Try and fall sick .."-the composer, chemist, and surgeon Aleksandr Borodin. , 2010, Angewandte Chemie.

[8]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[9]  Ian J Bruno,et al.  Bond lengths in organic and metal-organic compounds revisited: X-H bond lengths from neutron diffraction data. , 2010, Acta crystallographica. Section B, Structural science.

[10]  C. Kee,et al.  Cyclopentadienyl Molybdenum(II/VI) N-Heterocyclic Carbene Complexes: Synthesis, Structure, and Reactivity under Oxidative Conditions , 2010 .

[11]  G. M. Greetham,et al.  Investigating the vibrational dynamics of a 17e(-) metallocarbonyl intermediate using ultrafast two dimensional infrared spectroscopy. , 2010, Physical chemistry chemical physics : PCCP.

[12]  F. Hahn,et al.  Synthesis of NHC complexes by template controlled cyclization of beta-functionalized isocyanides. , 2009, Dalton transactions.

[13]  Carlos R. Baiz,et al.  Structurally selective geminate rebinding dynamics of solvent-caged radicals studied with nonequilibrium infrared echo spectroscopy. , 2009, Journal of the American Chemical Society.

[14]  S. Nolan,et al.  N-heterocyclic carbenes in late transition metal catalysis. , 2009, Chemical reviews.

[15]  Vittorio Scarano,et al.  SambVca: A Web Application for the Calculation of the Buried Volume of N‐Heterocyclic Carbene Ligands , 2009 .

[16]  S. Nolan,et al.  Carbenes : Synthesis, properties, and organometallic chemistry , 2009 .

[17]  James B. Cahoon DFT and time-resolved IR investigation of electron transfer between photogenerated 17- and 19-electron organometallic radicals , 2008 .

[18]  R. Giernoth,et al.  Transition‐Metal‐Free Synthesis of Perdeuterated Imidazolium Ionic Liquids by Alkylation and H/D Exchange , 2008 .

[19]  Paulo J. Costa,et al.  [Re(eta(5)-C5H5)(CO)3]+ family of 17-electron compounds: monomer/dimer equilibria and other reactions. , 2008, Journal of the American Chemical Society.

[20]  J. Hanson,et al.  A Tungsten Complex with a Bidentate, Hemilabile N-Heterocyclic Carbene Ligand, Facile Displacement of the Weakly Bound W−(CC) Bond, and the Vulnerability of the NHC Ligand toward Catalyst Deactivation during Ketone Hydrogenation , 2007 .

[21]  S. Nolan,et al.  Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands: A quest for understanding , 2007 .

[22]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[23]  R. Giernoth,et al.  Transition-metal free ring deuteration of imidazolium ionic liquid cations , 2006 .

[24]  Karma R. Sawyer,et al.  19-electron intermediates in the ligand substitution of CpW(CO)3* with a Lewis base. , 2005, Journal of the American Chemical Society.

[25]  F. Hahn,et al.  Template synthesis of tungsten complexes with saturated N-heterocyclic carbene ligands. , 2005, Chemical communications.

[26]  Kristina M. Krohn,et al.  (2-(Dimethylammonium)ethyl)cyclopentadienyltricarbonylmetalates: Group VI Metal Zwitterions. Attenuation of the Brønsted Basicity and Nucleophilicity of Formally Anionic Metal Centers , 2005 .

[27]  W. Leong,et al.  TR-FTIR absorption spectroscopy of transition metal carbonyl radicals generated by photodissociation of metal–metal bonds, by halogen abstraction or by radical ligand substitution , 2005 .

[28]  L. Cavallo,et al.  Steric and electronic properties of N-heterocyclic carbenes (NHC): a detailed study on their interaction with Ni(CO)4. , 2005, Journal of the American Chemical Society.

[29]  A. M. Magill,et al.  Basicity of nucleophilic carbenes in aqueous and nonaqueous solvents-theoretical predictions. , 2004, Journal of the American Chemical Society.

[30]  D. Dubois,et al.  Hydricities of BzNADH, CH5Mo(PMe3)(CO)2H, and C5Me5Mo(PMe3)(CO)2H in acetonitrile. , 2004, Journal of the American Chemical Society.

[31]  M. Tafipolsky,et al.  Electron delocalization in acyclic and N-heterocyclic carbenes and their complexes: a combined experimental and theoretical charge-density study. , 2002, Journal of the American Chemical Society.

[32]  W. Herrmann N-heterocyclic carbenes: a new concept in organometallic catalysis. , 2002, Angewandte Chemie.

[33]  R. Crabtree,et al.  Preferential C-binding versus N-binding in imidazole depends on the metal fragment involved. , 2002, Inorganic chemistry.

[34]  R. Addleman,et al.  Solvent Study of the Kinetics of Molybdenum Radical Self-Termination , 2001 .

[35]  C. Hardacre,et al.  A highly efficient synthetic procedure for deuteriating imidazoles and imidazolium salts , 2001 .

[36]  Elizabeth T. Papish,et al.  Protonation of CpW(CO)2(PMe3)H: Is the Metal or the Hydride the Kinetic Site? , 2000 .

[37]  Verkade,et al.  pKa measurements of P(RNCH2CH3)3N , 2000, The Journal of organic chemistry.

[38]  B. Wayland,et al.  Thermodynamic and Activation Parameters for Dissociation of [CpCr(CO)3]2 and [Cp*Cr(CO)3]2 into Paramagnetic Monomers from 1H NMR Shift and Line Width Measurements , 1999 .

[39]  G. Kiss,et al.  The rate and mechanism of oxidative addition of H2 to the Cr(CO)3C5Me5 radical—generation of a model for reaction of H2 with the Co(CO)4 radical , 1999 .

[40]  B. Brunschwig,et al.  Hydride Transfer Reactions of Transition Metal Hydrides: Kinetic Hydricity of Metal Carbonyl Hydrides , 1998 .

[41]  G. Maier,et al.  2,3-DIHYDROIMIDAZOL-2-YLIDENE , 1998 .

[42]  D. Braga,et al.  Hydrogen bonding in organometallic crystals — a survey , 1997 .

[43]  Louis J. Farrugia,et al.  ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI) , 1997 .

[44]  H. Schwarz,et al.  Imidazol-2-ylidene: Generation of a Missing Carbene and Its Dication by Neutralization–Reionizatin and Charge-Stripping Mass Spectrometry†‡ , 1997 .

[45]  W. Herrmann,et al.  N-heterocyclic carbenes as ligands in high-valent molybdenum and tungsten complexes , 1996 .

[46]  S. Peng,et al.  Synthesis of Cyclic Diamino-Substituted Metal Carbene Complexes , 1996 .

[47]  M. W. George,et al.  Unstable Species, CpW(CO)2Me and CpW(CO)3, Studied by Time-Resolved Infrared Spectroscopy , 1995 .

[48]  M. W. George,et al.  Photochemistry of [CpMo(CO)3]2. Direct Detection and Kinetics of the Radical CpMo(CO)3 in n-Heptane Solution at Room Temperature by Fast Time-Resolved Infrared Spectroscopy , 1995 .

[49]  D. Braga,et al.  Hydrogen Bonding in Organometallic Crystals. 2. C-H.cntdot. .cntdot. .cntdot.O Hydrogen Bonds in Bridged and Terminal First-Row Metal Carbonyls , 1995 .

[50]  W. Geiger,et al.  MEASUREMENT OF FAST DIMERIZATION RATES BY CYCLIC VOLTAMMETRY : COMPARISON OF THE 17E RADICALS (ETA 5-C5R5(CR(CO)3 (R=H, CH3) AT LOW TEMPERATURES , 1994 .

[51]  M. Tilset Oxidation of CpM(CO)3.bul. and CpM(CO)3(NCMe).bul. (M = Cr, Mo, W): Kinetic and Thermodynamic Considerations of Their Possible Involvement as Reducing Agents. Relative Acetonitrile Affinities of CpM(CO)3+ and CpM(CO)3.bul. , 1994 .

[52]  M. P. Castellani,et al.  Equilibrium constants for homolysis of metal-metal-bonded organometallic dimers in cyclohexane solution. Reaction of the (MeCp)Mo(CO)3 radical with the nitroxide radical trap TMIO , 1993 .

[53]  A. Bakac,et al.  Dissociation and recombination dynamics of the complexes [([eta][sup 5]-C[sub 5]R[sub 5])Cr(CO)[sub 3]][sub 2] (R = H, Me) , 1993 .

[54]  V. Parker,et al.  BOND ENERGIES IN SOLUTION FROM ELECTRODE POTENTIALS AND THERMOCHEMICAL CYCLES. A SIMPLIFIED AND GENERAL APPROACH , 1993 .

[55]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[56]  S. Scott,et al.  Reactivity of 17-electron organometallic tungsten and molybdenum radicals : a laser flash photolysis study , 1993 .

[57]  M. Hanaya,et al.  EPR studies of photochemical reactions of hexacarbonylbis(η5-2,4-cyclopentadien-1-yl) ditungsten, [CpW(CO)3]2, with quinones , 1992 .

[58]  S. Fortier,et al.  Kinetics and mechanism of substitution reactions of the 17-electron complexes [.eta.5-C5R5Cr(CO)3] (R = H, Me) with tertiary phosphines , 1992 .

[59]  A. J. Arduengo,et al.  Electronic stabilization of nucleophilic carbenes , 1992 .

[60]  T. Meyer,et al.  Organometallic thermodynamics. redox couples involving metal-metal bonds , 1992 .

[61]  Dennis R. Salahub,et al.  Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation , 1992 .

[62]  Harold Basch,et al.  Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms , 1992 .

[63]  R. Seeber,et al.  Synthesis, crystal structure, electrochemistry and molecular-orbital analysis of the piano-stool dimer [Mo2(η-C5H5)2(CO)4(NC5H4PPh2-2)2] , 1992 .

[64]  S. Fortier,et al.  An investigation of the homolytic dissociation of [.eta.5-C5Me5Cr(CO)3]2 and related complexes. The role of ligand substitution on the solution thermochemistry of metal-metal bond cleavage , 1992 .

[65]  Gautam R. Desiraju,et al.  The C-H.cntdot..cntdot..cntdot.O hydrogen bond in crystals: what is it? , 1991 .

[66]  P. White,et al.  Unusual 1H NMR Properties of Tungsten(II) Tris(pyrazolyl)borate Hydride Complexes , 1991 .

[67]  M. J. Winter,et al.  Hydride to carbene migration in the CpMH{=C(NHEt)Ph}(CO)2 (M = Mo, W) system. X-Ray crystal structure of CpMo η2-CH(Ph)NHEt (CO)2 , 1991 .

[68]  Anne E. Moody,et al.  Relative rates of hydrogen atom (H.cntdot.) transfer from transition-metal hydrides to trityl radicals , 1991 .

[69]  S. Sur,et al.  REACTION OF (ETA 5-C5PH5)2MO2(CO)6 WITH A CHELATING PHOSPHINE LIGAND : GENERATION OF STABLE 17- AND 19-ELECTRON COMPLEXES. DYNAMIC EQUILIBRIUM OF (ETA 5-C5PH5)2MO2(CO)6 AND (ETA 5-C5PH5)MO(CO)3 , 1991 .

[70]  A. Rheingold,et al.  Hexacarbonylbis(pentamethylcyclopentadienyl)ditungsten(W–W), [W2{η5‐C5(CH3)5}2(CO)6] , 1991 .

[71]  Malcolm L. H. Green,et al.  Transition metal–hydrogen–alkali metal bonds: synthesis and crystal structures of [K(18-crown-6)][W(PMe3)3H5], [Na(15-crown-5)][W(PMe3)3H5] and [{W(PMe3)3H5Li}4] and related studies , 1991 .

[72]  S. Fortier,et al.  Combined x-ray crystallographic, single-crystal EPR, and theoretical study of metal-centered radicals of the type [.eta.5C5R5Cr(CO)2L] (R = H, Me; L = CO, tertiary phosphine) , 1991 .

[73]  R. Bergman,et al.  Synthesis and reactions of nickel and palladium carbon-bound enolate complexes , 1990 .

[74]  M. Tilset,et al.  Solution homolytic bond dissociation energies of organotransition-metal hydrides , 1989 .

[75]  W. P. Fehlhammer,et al.  Reaktionen am koordinierten Trichlormethylisocyanid: II. Cyclische Dithio- und Diaminocarbene , 1989 .

[76]  M. Hanaya,et al.  EPR studies of the paramagnetic complexes produced in the photochemical reactions of hexacarbonylbis(.eta.5-2,4-cyclopentadien-1-yl)dimolybdenum, [CpMo(CO)3]2, with p-benzoquinones , 1989 .

[77]  Robert O. Gould,et al.  gauche conformer of bis[tricarbonyl(cyclopentadienyl)molybdenum] , 1988 .

[78]  S. Mclain Equilibrium between [CpCr(CO)3]2 and CpCr(CO)3. Thermodynamics of chromium-chromium single-bond cleavage , 1988 .

[79]  P. Krusic,et al.  The electron spin resonance spectra of CpCr(CO)3 and CpCr(CO)2P(C6H5)3 in single crystals of their Mn analogues , 1987 .

[80]  S. Fortier,et al.  Chemistry of the organochromium(I) radical CpCr(CO)3.bul.. X-ray structure of a stable derivative, CpCr(CO)2(PPh3).bul. , 1986 .

[81]  A. Willis,et al.  Organometallic nitrosyl chemistry. 29. Proton NMR spectroscopic criteria for elucidating the structures of bimetallic organotungsten hydrides in solutions. Crystal and molecular structures of [CpW(NO)H]2(.mu.-H)2 , 1986 .

[82]  J. Anderson,et al.  Electrochemistry of molybdenum and tungsten cyclopentadienyl carbonyl complexes, [M(CO)3Cp]2, [M(CO)3Cp]+, [M(CO)3Cp]-, and M(CO)3Cp where M = Mo and W , 1986 .

[83]  E. J. Moore,et al.  Kinetic and thermodynamic acidity of hydrido transition-metal complexes. 3. Thermodynamic acidity of common mononuclear carbonyl hydrides. , 1986, Journal of the American Chemical Society.

[84]  J. Landrum,et al.  The heats of hydrogenation of the metal—metal bonded complexes [M(CO)3C5H5]2 (M = Cr, Mo, W) , 1985 .

[85]  J. Howard,et al.  X-ray and neutron diffraction single-crystal studies of tris(phenyldiisopropylphosphine)tungsten hexahydride [WH6(PPh-i-Pr2)3] , 1984 .

[86]  S. Solodovnikov,et al.  EPR spectra of free radicals and complexes formed on photolysis of some dimers of carbonylmetallocenes in the presence of ortho-quinones , 1982 .

[87]  J. Sackett,et al.  Interactions of CpM'(CO)3- (M' = chromium, molybdenum, or tungsten) with cations: effects on CO exchange and RX addition reactions , 1982 .

[88]  A. Poë,et al.  Thermal homolytic fission of the MoMo bond in (h5 -C5H5)2Mo2(CO)6 , 1981 .

[89]  T. Koetzle,et al.  Structures of transition-metal hydride complexes , 1979 .

[90]  R. King,et al.  Organometallic Chemistry of the Transition Metals. XXXI. Stereoisomerism in Cyclopentadienylrhenium(II1) Derivatives132 , 1976 .

[91]  D. Ginley,et al.  Photochemistry of metal-metal bonded complexes. III. Photoreactivity of hexacarbonylbis(.eta.5-cyclopentadienyl)dimolybdenum(I) and -ditungsten(I) , 1975 .

[92]  D. R. Bidinosti,et al.  Mass Spectrometric Studies of the Ionization and Thermal Decomposition of Tungsten π-Cyclopentadienyl Tricarbonyl Dimer , 1975 .

[93]  F. Cotton,et al.  Molecular structures and barriers to internal rotation in bis (.eta.5-cyclopentadienyl)hexacarbonylditungsten and its molybdenum analog , 1974 .

[94]  F. Cotton,et al.  Unusual structural and magnetic resonance properties of dicyclopentadienylhexacarbonyldichromium , 1974 .

[95]  J. McBride The hexaphenylethane riddle , 1974 .

[96]  R. Sundberg,et al.  Nitrogen-bound and carbon-bound imidazole complexes of ruthenium ammines , 1974 .

[97]  F. Cotton,et al.  Structural and dynamic properties of dicyclopenta-dienylhexacarbonyldimolybdenum in various solvents , 1973 .

[98]  J. W. Faller,et al.  Organometallic conformational equilibriums. XI. cis-trans Isomerism and stereochemical nonrigidity in cyclopentadienylmolybdenum complexes , 1970 .

[99]  C. R. Nolte,et al.  Reactions of metal carbonyl derivatives : V. Reaction of bis (tricarbonyl-π-cyclopentadienylmolybdenum) with tertiary alkyl phosphites , 1970 .

[100]  P. Kalck,et al.  Study of the exchange phenomenon between two isomers of phosphine substituted carbonyl-π-cyclopentadienyl complexes of molybdenum and tungsten II. Steric influence of bulky groups in phosphines , 1970 .

[101]  P. Kalck,et al.  Study of the exchange phenomenon between two isomers of hydridodicarbonyl(trimethyl- or trimethoxyphosphine)cyclopentadienyltungsten , 1969 .

[102]  K. Öfele 1,3-Dimethyl-4-imidazolinyliden-(2)-pentacarbonylchrom ein neuer übergangsmetall-carben-komplex , 1968 .

[103]  R. Nyholm,et al.  Substitution products of the π-cyclopentadienylmolybdenum carbonyl , 1968 .

[104]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[105]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[106]  F. C. Wilson,et al.  Molecular Structure of bis‐[Cyclopentadienyl Molybdenum Tricarbonyl] , 1957 .

[107]  E. Fischer,et al.  Cyclopentadienyl-chrom-tricarbonyl-wasserstoff , 1955 .

[108]  G. Wilkinson Cyclopentadienyl Compounds of Chromium, Molybdenum and Tungsten , 1954 .