Novel green algal isolates from the Egyptian hyper‐arid desert oases: a polyphasic approach with a description of Pharao desertorum gen. et sp. nov. (Chlorophyceae, Chlorophyta)

The biodiversity of terrestrial algae is still grossly understudied, and African deserts in particular are barely touched in this respect. Here, four coccoid green algae from oases in the Western Desert of Egypt were characterized using a combination of morphotaxonomic, ecological and 18S rDNA data, with additional carotenoid and lipid analyses for two of the strains. Three strains were identified as affiliated with known taxa: Mychonastes sp., Asterarcys sp. (first report of this genus from a desert soil), and Stichococcus cf. deasonii. The fourth strain is proposed to represent a new cryptic genus Pharao gen. nov., with the type species P. desertorum sp. nov. The new taxon is sister to the clade of uncharacterized North American desert strains of Radiococcaceae (Chlorophyceae, Chlorophyta). The pigment profile of P. desertorum gen. et sp. nov. revealed carotenoids and chlorophylls typical of green algae. Bioorganic analysis showed a complex lipidome based on phospho‐ (PC), galacto‐ (MGDG and DGDG), betaine‐ (DGTS), and sulfoquinovosyl‐ (SQDG) membrane lipids, besides significant amounts of storage neutral lipids such as diacyl‐ (DAG) and triacylglycerols (TAG). The presence of saturated alkyl chains within all the membrane lipid classes in P. desertorum and Asterarcys sp. appears to reflect the need to maintain membrane fluidity and viscosity. In summary, African deserts likely still harbor new taxa to be described, and lipidomic analyses of such taxa may provide clues about their ability to survive in the extremely harsh desert habitats.

[1]  M. Zahran,et al.  The Sinai Peninsula , 2018, The Nile Basin.

[2]  A. Shaaban,et al.  Soil Algae of El-Farafra Oasis (The Western Desert, Egypt) and N2-fixation Efficiency of Five Heterocytous Cyanophytes , 2017 .

[3]  M. Cantonati,et al.  Polyphasic characterization of Westiellopsis prolifica (Hapalosiphonaceae, Cyanobacteria) from the El-Farafra Oasis (Western Desert, Egypt) , 2017 .

[4]  M. Cantonati,et al.  Molecular phylogeny and detailed morphological analysis of two freshwater Rhizoclonium strains from contrasting spring types in Egypt and Italy , 2017 .

[5]  A. Holzinger,et al.  Single colony genetic analysis of epilithic stream algae of the genus Chamaesiphon spp , 2017, Hydrobiologia.

[6]  C. Riquelme,et al.  Characterization of a Chlorophyta microalga isolated from a microbial mat in Salar de Atacama (northern Chile) as a potential source of compounds for biotechnological applications , 2017 .

[7]  U. Karsten,et al.  Ecophysiological traits of various genotypes of a green key alga in biological soil crusts from the semi-arid Colorado Plateau, USA , 2017, Journal of Applied Phycology.

[8]  A. El‐Sabbagh,et al.  Thalassinoides in the Middle Miocene succession at Siwa Oasis, northwestern Egypt , 2017 .

[9]  F. Leliaert,et al.  Refining species boundaries in algae , 2017, Journal of phycology.

[10]  A. El‐Sabbagh,et al.  A shell concentration of the Middle Miocene Crassostrea gryphoides (Schlotheim, 1813) from Siwa Oasis, Western Desert, Egypt , 2016 .

[11]  G. Flaim,et al.  Comparative Analysis of Membrane Lipids in Psychrophilic and Mesophilic Freshwater Dinoflagellates , 2016, Front. Plant Sci..

[12]  J. Elster,et al.  A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts , 2016, Polar Biology.

[13]  R. Fensham,et al.  The history and fate of the Nubian Sandstone Aquifer springs in the oasis depressions of the Western Desert, Egypt , 2016, Hydrogeology Journal.

[14]  A. Elsheikh Mitigation of groundwater level deterioration of the Nubian Sandstone aquifer in Farafra Oasis, Western Desert, Egypt , 2015, Environmental Earth Sciences.

[15]  A. Anesi,et al.  A fast liquid chromatography-mass Spectrometry methodology for membrane lipid profiling through hydrophilic interaction liquid chromatography. , 2015, Journal of chromatography. A.

[16]  P. Lewis,et al.  Widespread desert affiliation of trebouxiophycean algae (Trebouxiophyceae, Chlorophyta) including discovery of three new desert genera , 2014 .

[17]  H. Wanas,et al.  Calcretes and palustrine carbonates in the Oligo-Miocene clastic–carbonate unit of the Farafra Oasis, Western Desert, Egypt: Their origin and paleoenvironmental significance , 2014 .

[18]  G. Flaim,et al.  Temperature‐induced changes in lipid biomarkers and mycosporine‐like amino acids in the psychrophilic dinoflagellate Peridinium aciculiferum , 2014 .

[19]  F. Leliaert,et al.  DNA-based species delimitation in algae , 2014 .

[20]  P. Lewis,et al.  Putting incertae sedis taxa in their place: a proposal for ten new families and three new genera in Sphaeropleales (Chlorophyceae, Chlorophyta) , 2014, Journal of phycology.

[21]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[22]  Omri M. Finkel,et al.  A newly isolated Chlorella sp. from desert sand crusts exhibits a unique resistance to excess light intensity. , 2013, FEMS microbiology ecology.

[23]  L. A. Lewis,et al.  Newly Revealed Diversity of Green Microalgae from Wilderness Areas of Joshua Tree National Park (JTNP) , 2013 .

[24]  L. A. Lewis,et al.  Revision of the genus Bracteacoccus Tereg (Chlorophyceae, Chlorophyta) based on a phylogenetic approach , 2013 .

[25]  H. Yoon,et al.  Isolation and description of a Korean microalga, Asterarcys quadricellulare KNUA020, and analysis of its biotechnological potential , 2012 .

[26]  G. Flaim,et al.  Changes in galactolipid composition of the cold freshwater dinoflagellate Borghiella dodgei in response to temperature , 2012, Hydrobiologia.

[27]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[28]  Jared C. Rada,et al.  The tangled taxonomic history of Dictyococcus, Bracteacoccus and Pseudomuriella (Chlorophyceae, Chlorophyta) and their distinction based on a phylogenetic perspective , 2011 .

[29]  H. McManus,et al.  MOLECULAR PHYLOGENETIC RELATIONSHIPS IN THE FRESHWATER FAMILY HYDRODICTYACEAE (SPHAEROPLEALES, CHLOROPHYCEAE), WITH AN EMPHASIS ON PEDIASTRUM DUPLEX 1 , 2011, Journal of phycology.

[30]  C. Bock,et al.  Taxonomic reassessment of the genus Mychonastes (Chlorophyceae, Chlorophyta) including the description of eight new species , 2011 .

[31]  K. Bischof,et al.  Photosynthesis and lipid composition of the Antarctic endemic rhodophyte Palmaria decipiens: effects of changing light and temperature levels , 2010, Polar Biology.

[32]  L. Falcón,et al.  Dating the cyanobacterial ancestor of the chloroplast , 2009, The ISME Journal.

[33]  B. Weber,et al.  Southern African Biological Soil Crusts are Ubiquitous and Highly Diverse in Drylands, Being Restricted by Rainfall Frequency , 2009, Microbial Ecology.

[34]  Jiancheng Zhao,et al.  Chlorophytes of biological soil crusts in Gurbantunggut Desert, Xinjiang Autonomous Region, China , 2008, Frontiers of Biology in China.

[35]  D. W. Gray,et al.  The Green Algal Underground: Evolutionary Secrets of Desert Cells , 2008 .

[36]  Z. Cardon,et al.  Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. , 2007, Plant, cell & environment.

[37]  M. Eliáš,et al.  A taxonomic study of two Stichococcus species (Trebouxiophyceae, Chlorophyta) with a starch-enveloped pyrenoid , 2007 .

[38]  Surendra Singh,et al.  Diversity and seasonal variation of viable algal particles in the atmosphere of a subtropical city in India. , 2006, Environmental research.

[39]  P. Lewis,et al.  Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). , 2005, Systematic biology.

[40]  D. Remias,et al.  Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis , 2005 .

[41]  M. Cantonati,et al.  On-line identification of secondary metabolites in freshwater microalgae and cyanobacteria by combined liquid chromatography-photodiode array detection-mass spectrometric techniques. , 2005, Journal of chromatography. A.

[42]  A. Bhatnagar,et al.  Microbial diversity in desert ecosystems , 2005 .

[43]  V. R. Flechtner,et al.  CRYPTIC SPECIES OF SCENEDESMUS (CHLOROPHYTA) FROM DESERT SOIL COMMUNITIES OF WESTERN NORTH AMERICA 1 , 2004 .

[44]  G. Guella,et al.  A new solution for an old problem: the regiochemical distribution of the acyl chains in galactolipids can be established by electrospray ionization tandem mass spectrometry. , 2003, Rapid communications in mass spectrometry : RCM.

[45]  S. Shoup,et al.  POLYPHYLETIC ORIGIN OF PARALLEL BASAL BODIES IN SWIMMING CELLS OF CHLOROPHYCEAN GREEN ALGAE (CHLOROPHYTA) 1 , 2003 .

[46]  V. R. Flechtner,et al.  Green algae (Chlorophyta) of desert microbiotic crusts: diversity of North American taxa , 2002 .

[47]  A. Shaaban,et al.  Algal Flora of Egyptian Soils 1. The occurrence of Cyanobacteria and Algae in some habitats , 2000 .

[48]  M. Heiry,et al.  Soil algae of Thymelaea hirsuta and Asphodelus microcarpus in mediterranean desert of Egypt , 2000 .

[49]  A. Issa,et al.  A Comparative Study of Algal Communities on Cultivated and Uncultivated Soils , 2000 .

[50]  J. Johansen,et al.  Algal composition of microbiotic crusts from the Central Desert of Baja California, Mexico , 1998 .

[51]  L. Lewis DIVERSITY AND PHYLOGENETIC PLACEMENT OF BRACTEACOCCUS TEREG (CHLOROPHYCEAE, CHLOROPHYTA) BASED ON 18S RIBOSOMAL RNA GENE SEQUENCE DATA 1 , 1997 .

[52]  V. Dembitsky Betaine ether-linked glycerolipids: chemistry and biology. , 1996, Progress in lipid research.

[53]  J. Johansen CRYPTOGAMIC CRUSTS OF SEMIARID AND ARID LANDS OF NORTH AMERICA , 1993 .

[54]  A. Lukešová Revision of the genus Fofficularia Mill., (Chlorophyceae) , 1993 .

[55]  Professor Mahmoud Abdel Zahran The Vegetation of Egypt , 1992, Springer Netherlands.

[56]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[57]  T. R. Deason Filamentous and Colonial Soil Algae from Dauphin Island, Alabama , 1969 .

[58]  J. Folch,et al.  A simple method for the isolation and purification of total lipides from animal tissues. , 1957, The Journal of biological chemistry.

[59]  Harold C. Bold,et al.  The Morphology of Chlamydomonas chlamydogama, Sp. Nov. , 1949 .

[60]  R. P. John An Ecological and Taxonomic Study of the Algae of British SoilsI. The Distribution of the Surface-Growing Algae|_1 , 1942 .

[61]  P. Hallenbeck Modern Topics in the Phototrophic Prokaryotes , 2017 .

[62]  H. Omar,et al.  DISTRIBUTION OF DIFFERENT SOIL ALGAL TAXA IN RELATION TO PHYSICO-CHEMICAL CHARACTERISTICS OF SOIL AT GHARBIA GOVERNORATE , 2016 .

[63]  E. Y. El-Ayouty,et al.  STUDIES ON SOIL ALGAL FLORA IN KAFR EL- SHEIKH GOVERNORATE, EGYPT , 2016 .

[64]  H. Ettl,et al.  Syllabus der Boden-, Luft- und Flechtenalgen , 2014 .

[65]  C. Bock,et al.  A phylogenetic study on Scenedesmaceae with the description of a new species of Pectinodesmus and the new genera Verrucodesmus and Chodatodesmus (Chlorophyta, Chlorophyceae) , 2013 .

[66]  M. A. Hameed,et al.  SURVEY OF SOIL ALGAL FLORA OF SOME CULTIVATED SOILS IN BENI SUEF, EGYPT , 2006 .

[67]  A. Fathi,et al.  Algal Flora of Rice Fields at El-Kharga Oasis, Egypt - , 2004 .

[68]  Usama A. Mahalel,et al.  Ecological studies on the soil algae of Wadi Allaqi biosphere reserve area in South Eastern Desert, Egypt - , 2000 .

[69]  J. Harwood Membrane Lipids in Algae , 1998 .

[70]  Noel H. Holmgren,et al.  Index Herbariorum: A global directory of public herbaria and associated staff , 1998 .

[71]  E. Hegewald,et al.  Asterarcys Comas, eine weit verbreitete tropische Grünalgengattung , 1992 .

[72]  A. Willis,et al.  The Western Desert , 1992 .