Discriminative Word Alignment with a Function Word Reordering Model

We address the modeling, parameter estimation and search challenges that arise from the introduction of reordering models that capture non-local reordering in alignment modeling. In particular, we introduce several reordering models that utilize (pairs of) function words as contexts for alignment reordering. To address the parameter estimation challenge, we propose to estimate these reordering models from a relatively small amount of manually-aligned corpora. To address the search challenge, we devise an iterative local search algorithm that stochastically explores reordering possibilities. By capturing non-local reordering phenomena, our proposed alignment model bears a closer resemblance to state-of-the-art translation model. Empirical results show significant improvements in alignment quality as well as in translation performance over baselines in a large-scale Chinese-English translation task.

[1]  Daniel Marcu,et al.  A Phrase-Based,Joint Probability Model for Statistical Machine Translation , 2002, EMNLP.

[2]  Dekai Wu,et al.  Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora , 1997, CL.

[3]  Colin Cherry,et al.  Soft Syntactic Constraints for Word Alignment through Discriminative Training , 2006, ACL.

[4]  Daniel Marcu,et al.  Statistical Phrase-Based Translation , 2003, NAACL.

[5]  Franz Josef Och,et al.  Minimum Error Rate Training in Statistical Machine Translation , 2003, ACL.

[6]  Robert C. Moore Improving IBM Word Alignment Model 1 , 2004, ACL.

[7]  Alexander M. Fraser,et al.  Getting the Structure Right for Word Alignment: LEAF , 2007, EMNLP-CoNLL.

[8]  Robert L. Mercer,et al.  The Mathematics of Statistical Machine Translation: Parameter Estimation , 1993, CL.

[9]  Masaaki Nagata,et al.  A Clustered Global Phrase Reordering Model for Statistical Machine Translation , 2006, ACL.

[10]  Haizhou Li,et al.  Ordering Phrases with Function Words , 2007, ACL.

[11]  Alexander M. Fraser,et al.  Squibs and Discussions: Measuring Word Alignment Quality for Statistical Machine Translation , 2007, CL.

[12]  Ulf Hermjakob,et al.  Improved Word Alignment with Statistics and Linguistic Heuristics , 2009, EMNLP.

[13]  Dan Klein,et al.  Unsupervised Syntactic Alignment with Inversion Transduction Grammars , 2010, NAACL.

[14]  Dan Klein,et al.  Joint Parsing and Alignment with Weakly Synchronized Grammars , 2010, NAACL.

[15]  Ted Dunning,et al.  Accurate Methods for the Statistics of Surprise and Coincidence , 1993, CL.

[16]  Daniel Gildea,et al.  Stochastic Lexicalized Inversion Transduction Grammar for Alignment , 2005, ACL.

[17]  John DeNero,et al.  Better Word Alignments with Supervised ITG Models , 2009, ACL.

[18]  David Chiang,et al.  A Hierarchical Phrase-Based Model for Statistical Machine Translation , 2005, ACL.

[19]  Haizhou Li,et al.  Topological Ordering of Function Words in Hierarchical Phrase-based Translation , 2009, ACL/IJCNLP.

[20]  Daniel Gildea,et al.  Inducing Word Alignments with Bilexical Synchronous Trees , 2006, ACL.

[21]  John DeNero,et al.  Tailoring Word Alignments to Syntactic Machine Translation , 2007, ACL.

[22]  Hermann Ney,et al.  HMM-Based Word Alignment in Statistical Translation , 1996, COLING.

[23]  Hermann Ney,et al.  The Alignment Template Approach to Statistical Machine Translation , 2004, CL.

[24]  Chris Dyer,et al.  A Gibbs Sampler for Phrasal Synchronous Grammar Induction , 2009, ACL.

[25]  Maria Leonor Pacheco,et al.  of the Association for Computational Linguistics: , 2001 .