An equivalent formulation of the Fan-Raspaud Conjecture and related problems

In 1994, it was conjectured by Fan and Raspaud that every simple bridgeless cubic graph has three perfect matchings whose intersection is empty. In this paper we answer a question recently proposed by Mkrtchyan and Vardanyan, by giving an equivalent formulation of the Fan-Raspaud Conjecture. We also study a possibly weaker conjecture originally proposed by the first author, which states that in every simple bridgeless cubic graph there exist two perfect matchings such that the complement of their union is a bipartite graph. Here, we show that this conjecture can be equivalently stated using a variant of Petersen-colourings, we prove it for graphs having oddness at most four and we give a natural extension to bridgeless cubic multigraphs and to certain cubic graphs having bridges.

[1]  Hao Lin,et al.  Three matching intersection property for matching covered graphs , 2017, Discret. Math. Theor. Comput. Sci..

[2]  Vahan V. Mkrtchyan,et al.  On two consequences of Berge-Fulkerson conjecture , 2018, ArXiv.

[3]  Edita Mácajová,et al.  Sparsely intersecting perfect matchings in cubic graphs , 2014, Comb..

[4]  Eckhard Steffen,et al.  Petersen-colorings and some families of snarks , 2014, Ars Math. Contemp..

[5]  Robert Sámal New approach to Petersen coloring , 2011, Electron. Notes Discret. Math..

[6]  D. R. Fulkerson,et al.  Blocking and anti-blocking pairs of polyhedra , 1971, Math. Program..

[7]  Bill Jackson,et al.  2-Factor hamiltonian graphs , 2003, J. Comb. Theory, Ser. B.

[8]  André Raspaud,et al.  Fulkerson's Conjecture and Circuit Covers , 1994, J. Comb. Theory, Ser. B.

[9]  J. Petersen Die Theorie der regulären graphs , 1891 .

[10]  Giuseppe Mazzuoccolo,et al.  Treelike Snarks , 2016, Electron. J. Comb..

[11]  Giuseppe Mazzuoccolo New conjectures on perfect matchings in cubic graphs , 2013, Electron. Notes Discret. Math..

[12]  Edita Mácajová,et al.  Fano colourings of cubic graphs and the Fulkerson Conjecture , 2005, Theor. Comput. Sci..

[13]  Xiaofeng Wang,et al.  Unique Fulkerson coloring of Petersen minor-free cubic graphs , 2015, Eur. J. Comb..

[14]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[15]  A. Errera Analysis situs: Une démonstration du théorème de Petersen , .

[16]  David Cariolaro,et al.  Excessive Factorizations of Regular Graphs , 2006 .

[17]  Giuseppe Mazzuoccolo,et al.  On Cubic Bridgeless Graphs Whose Edge-Set Cannot be Covered by Four Perfect Matchings , 2014, J. Graph Theory.

[18]  Louis Esperet,et al.  Exponentially many perfect matchings in cubic graphs , 2011 .

[19]  M. A. Fiol,et al.  On measures of edge-uncolorability of cubic graphs: A brief survey and some new results , 2017, 1702.07156.

[20]  Daniel Král,et al.  Unions of perfect matchings in cubic graphs , 2005, Electron. Notes Discret. Math..

[21]  Vahan V. Mkrtchyan,et al.  S12 and P12-colorings of cubic graphs , 2018, Ars Math. Contemp..

[22]  Vahan V. Mkrtchyan,et al.  A remark on the Petersen coloring conjecture of Jaeger , 2012, Australas. J Comb..

[23]  Li-gang Jin,et al.  Petersen Cores and the Oddness of Cubic Graphs , 2017, J. Graph Theory.

[24]  Cun-Quan Zhang,et al.  Perfect matching covering, the Berge-Fulkerson conjecture, and the Fan-Raspaud conjecture , 2014, Discret. Appl. Math..

[25]  Eckhard Steffen,et al.  Measures of Edge-Uncolorability of Cubic Graphs , 2018, Electron. J. Comb..

[26]  Giuseppe Mazzuoccolo Covering a cubic graph with perfect matchings , 2013, Discret. Math..

[27]  André Raspaud,et al.  Perfect matchings with restricted intersection in cubic graphs , 2010, Eur. J. Comb..

[28]  Eckhard Steffen 1-Factor and Cycle Covers of Cubic Graphs , 2015, J. Graph Theory.

[29]  Jean-Marie Vanherpe,et al.  On the perfect matching index of bridgeless cubic graphs , 2009, ArXiv.

[30]  Jean-Sébastien Sereni,et al.  Projective, affine, and abelian colorings of cubic graphs , 2009, Eur. J. Comb..