How Vacuous Is Vacuous?

Model-checking gained wide popularity for analyzing software and hardware systems. However, even when the desired property holds, the property or the model may still require fixing. For example, a property ϕ: “on all paths, a request is followed by an acknowledgment”, may hold because no requests have been generated. Vacuity detection has been proposed to address the above problem. This technique is able to determine that the above property ϕ is satisfied vacuously in systems where requests are never sent. Recent work in this area enabled the computation of interesting witnesses for the satisfaction of properties (in our case, those that satisfy ϕ and contain a request) and vacuity detection with respect to subformulas with single and multiple subformula occurrences.

[1]  Orna Kupferman Augmenting Branching Temporal Logics with Existential Quantification over Atomic Propositions , 1995, CAV.

[2]  Frank S. de Boer,et al.  An Algebraic Perspective of Constraint Logic Programming , 1997, J. Log. Comput..

[3]  George J. Milne,et al.  Correct Hardware Design and Verification Methods , 2003, Lecture Notes in Computer Science.

[4]  A. Gurfinkel,et al.  Multi-valued Symbolic Model-checking: Fairness, Counter-examples, Running Time Abstract Multi-valued Symbolic Model-checking: Fairness, Counter-examples, Running Time , 2003 .

[5]  Marsha Chechik,et al.  Multi-Valued Model Checking via Classical Model Checking , 2003, CONCUR.

[6]  Orna Kupferman,et al.  Vacuity Detection in Temporal Model Checking , 1999, CHARME.

[7]  Marsha Chechik,et al.  Generating Counterexamples for Multi-valued Model-Checking , 2003, FME.

[8]  Fabio Somenzi,et al.  Vacuum Cleaning CTL Formulae , 2002, CAV.

[9]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[10]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[11]  Cnrs Fre,et al.  Model Checking a Path (Preliminary Report) , 2003 .

[12]  Marsha Chechik,et al.  Multi-valued symbolic model-checking , 2003, TSEM.

[13]  Randal E. Bryant,et al.  Formally Verifying a Microprocessor Using a Simulation Methodology , 1994, 31st Design Automation Conference.

[14]  Marsha Chechik,et al.  Temporal Logic Query Checking: A Tool for Model Exploration , 2003, IEEE Trans. Software Eng..

[15]  C. Eisner,et al.  Efficient Detection of Vacuity in ACTL Formulaas , 1997, CAV.

[16]  Ilan Beer,et al.  Efficient Detection of Vacuity in Temporal Model Checking , 2001, Formal Methods Syst. Des..

[17]  Orna Grumberg,et al.  Enhanced Vacuity Detection in Linear Temporal Logic , 2003, CAV.

[18]  Radha Jagadeesan,et al.  Modal Transition Systems: A Foundation for Three-Valued Program Analysis , 2001, ESOP.

[19]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[20]  Patrice Godefroid,et al.  Temporal logic query checking , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[21]  Radha Jagadeesan,et al.  Model checking partial state spaces with 3-valued temporal logics , 2001 .

[22]  Patrice Godefroid,et al.  Model Checking with Multi-valued Logics , 2004, ICALP.

[23]  Marsha Chechik,et al.  Efficient Multiple-Valued Model-Checking Using Lattice Representations , 2001, CONCUR.

[24]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[25]  Stefania Gnesi,et al.  FME 2003: Formal Methods: International Symposium of Formal Methods Europe, Pisa, Italy, September 8-14, 2003. Proceedings , 2003, Lecture Notes in Computer Science.

[26]  R. Milner,et al.  Bigraphical Reactive Systems , 2001, CONCUR.

[27]  Stephan Merz,et al.  Model Checking , 2000 .

[28]  C. R. Ramakrishnan,et al.  Vacuity Checking in the Modal Mu-Calculus , 2002, AMAST.