Fuzzy Portfolio Selection Models: A Numerical Study

In this chapter we analyze the numerical performance of some possibilistic models for selecting portfolios in the framework of risk-return trade-off. Portfolio optimization deals with the problem of how to allocate wealth among several assets, taking into account the uncertainty involved in the behavior of the financial markets. Different approaches for quantifying the uncertainty of the future return on the investment are considered: either assuming that the return on every individual asset is modeled as a fuzzy number or directly measuring the uncertainty associated with the return on a given portfolio. Conflicting goals representing the uncertain return on and risk of a fuzzy portfolio are analyzed by means of possibilistic moments: interval-valued mean, downside-risk, and coefficient of skewness. Thus, several nonlinear multi-objective optimization problems for determining the efficient frontier could appear. In order to incorporate possible trading requirements and investor’s wishes, some constraints are added to the optimization problems, and the effects of their fulfillment on the corresponding efficient frontiers are analyzed using a data set from the Spanish stock market.

[1]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[2]  Shouyang Wang,et al.  Portfolio Selection and Asset Pricing , 2002 .

[3]  Carlos Romero,et al.  Portfolio Selection: A Compromise Programming Solution , 1996 .

[4]  H. Levy,et al.  Approximating Expected Utility by a Function of Mean and Variance , 1979 .

[5]  Mehrdad Tamiz Multi-Objective Programming and Goal Programming , 1996 .

[6]  Yusif Simaan Estimation risk in portfolio selection: the mean variance model versus the mean absolute deviation model , 1997 .

[7]  E. Vercher Portfolios with fuzzy returns: Selection strategies based on semi-infinite programming , 2008 .

[8]  Samarjit Kar,et al.  Fuzzy mean-variance-skewness portfolio selection models by interval analysis , 2011, Comput. Math. Appl..

[9]  H. Konno,et al.  Portfolio Optimization under Lower Partial Risk Measures , 2002 .

[10]  Tapan Kumar Roy,et al.  Multi-objective possibilistic model for portfolio selection with transaction cost , 2009 .

[11]  Teresa León,et al.  A DOWNSIDE RISK APPROACH FOR THE PORTFOLIO SELECTION PROBLEM WITH FUZZY RETURNS , 2004 .

[12]  Xiaoxia Huang,et al.  A new perspective for optimal portfolio selection with random fuzzy returns , 2007, Inf. Sci..

[13]  Teresa León,et al.  Solving a class of fuzzy linear programs by using semi-infinite programming techniques , 2004, Fuzzy Sets Syst..

[14]  Teresa León,et al.  Viability of infeasible portfolio selection problems: A fuzzy approach , 2002, Eur. J. Oper. Res..

[15]  Przemyslaw Grzegorzewski,et al.  Nearest interval approximation of a fuzzy number , 2002, Fuzzy Sets Syst..

[16]  Christer Carlsson,et al.  On Possibilistic Mean Value and Variance of Fuzzy Numbers , 1999, Fuzzy Sets Syst..

[17]  Stefan Chanas,et al.  On the interval approximation of a fuzzy number , 2001, Fuzzy Sets Syst..

[18]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[19]  C. Zopounidis,et al.  Multi‐criteria decision aid in financial decision making: methodologies and literature review , 2002 .

[20]  Hans Kellerer,et al.  Optimization of cardinality constrained portfolios with a hybrid local search algorithm , 2003, OR Spectr..

[21]  Enriqueta Vercher,et al.  Fuzzy portfolio optimization under downside risk measures , 2007, Fuzzy Sets Syst..

[22]  R. Słowiński Fuzzy sets in decision analysis, operations research and statistics , 1999 .

[23]  Hamid Reza Golmakani,et al.  Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm , 2009, Expert Syst. Appl..

[24]  James C. Bezdek,et al.  Analysis of fuzzy information , 1987 .

[25]  Yue Qi,et al.  Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection , 2007, Ann. Oper. Res..

[26]  D. Dubois,et al.  The mean value of a fuzzy number , 1987 .

[27]  A. Saeidifar,et al.  The possibilistic moments of fuzzy numbers and their applications , 2009 .

[28]  Sang-Chin Yang,et al.  Portfolio optimization problems in different risk measures using genetic algorithm , 2009, Expert Syst. Appl..

[29]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[30]  H. Konno,et al.  A MEAN-VARIANCE-SKEWNESS PORTFOLIO OPTIMIZATION MODEL , 1995 .

[31]  S. Ramaswamy Portfolio Selection Using Fuzzy Decision Theory , 2005 .

[32]  M. Amparo Vila,et al.  On a canonical representation of fuzzy numbers , 1998, Fuzzy Sets Syst..

[33]  Constantin Zopounidis,et al.  IPSSIS: An integrated multicriteria decision support system for equity portfolio construction and selection , 2011, Eur. J. Oper. Res..

[34]  Enriqueta Vercher,et al.  A fuzzy ranking strategy for portfolio selection applied to the Spanish stock market , 2007, 2007 IEEE International Fuzzy Systems Conference.

[35]  Tsong-Yue Lai Portfolio selection with skewness: A multiple-objective approach , 1991 .

[36]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[37]  Amelia Bilbao-Terol,et al.  A fuzzy goal programming approach to portfolio selection , 2001, Eur. J. Oper. Res..

[38]  Marco Laumanns,et al.  A unified model for multi-objective evolutionary algorithms with elitism , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[39]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[40]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[41]  Enriqueta Vercher,et al.  A Possibilistic Mean-Downside Risk-Skewness Model for Efficient Portfolio Selection , 2013, IEEE Transactions on Fuzzy Systems.

[42]  Hiroaki Ishii,et al.  Portfolio selection problems with random fuzzy variable returns , 2009, Fuzzy Sets Syst..

[43]  Robert Fullér,et al.  On Weighted Possibilistic Mean and Variance of Fuzzy Numbers , 2002, Fuzzy Sets Syst..

[44]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[45]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[46]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[47]  Kin Keung Lai,et al.  Fuzzy Portfolio Optimization , 2008 .

[48]  Enriqueta Vercher,et al.  A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection , 2012, Fuzzy Sets Syst..

[49]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[50]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[51]  J. Lintner THE VALUATION OF RISK ASSETS AND THE SELECTION OF RISKY INVESTMENTS IN STOCK PORTFOLIOS AND CAPITAL BUDGETS , 1965 .

[52]  Kristiaan Kerstens,et al.  Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach , 2007, Manag. Sci..

[53]  H. Konno,et al.  Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market , 1991 .

[54]  E. Dotzauer,et al.  Optimal portfolios using linear programming models , 2004, J. Oper. Res. Soc..

[55]  D. Dubois,et al.  Fundamentals of fuzzy sets , 2000 .

[56]  F. Sortino,et al.  DOWNSIDE RISK - CAPTURING WHATS AT STAKE IN INVESTMENT SITUATIONS , 1991 .

[57]  Valerio Lacagnina,et al.  A stochastic soft constraints fuzzy model for a portfolio selection problem , 2006, Fuzzy Sets Syst..

[58]  Francesc J. Ortí,et al.  ON THE TREATMENT OF UNCERTAINTY IN PORTFOLIO SELECTION , 2002 .

[59]  Xiang Li,et al.  Mean-variance-skewness model for portfolio selection with fuzzy returns , 2010, Eur. J. Oper. Res..

[60]  Konstantinos P. Anagnostopoulos,et al.  A portfolio optimization model with three objectives and discrete variables , 2010, Comput. Oper. Res..

[61]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[62]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[63]  Chang-Chun Lin,et al.  Genetic algorithms for portfolio selection problems with minimum transaction lots , 2008, Eur. J. Oper. Res..

[64]  Hideo Tanaka,et al.  POSSIBILISTIC DATA ANALYSIS AND ITS APPLICATION TO PORTFOLIO SELECTION PROBLEMS , 1998 .

[65]  Christer Carlsson,et al.  A Possibilistic Approach to Selecting Portfolios with Highest Utility Score , 2001, Fuzzy Sets Syst..