Evaluate the fuzzy completion times in the fuzzy flow shop scheduling problems using the virus-evolutionary genetic algorithms

[1]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[2]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[3]  Siegfried Gottwald,et al.  Applications of Fuzzy Sets to Systems Analysis , 1975 .

[4]  Didier Dubois,et al.  Ranking fuzzy numbers in the setting of possibility theory , 1983, Inf. Sci..

[5]  David E. Goldberg,et al.  Alleles, loci and the traveling salesman problem , 1985 .

[6]  David E. Goldberg,et al.  AllelesLociand the Traveling Salesman Problem , 1985, ICGA.

[7]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[8]  Hiroaki Ishii,et al.  Two scheduling problems with fuzzy due-dates , 1992 .

[9]  Hideo Tanaka,et al.  Genetic algorithms and neighborhood search algorithms for fuzzy flowshop scheduling problems , 1994 .

[10]  H. Ishibuchi,et al.  Local search algorithms for flow shop scheduling with fuzzy due-dates☆ , 1994 .

[11]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[12]  Chuen-Lung Chen,et al.  An application of genetic algorithms for flow shop problems , 1995 .

[13]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[14]  Toshio Fukuda,et al.  Virus-evolutionary genetic algorithm for a self-organizing manufacturing system , 1996 .

[15]  Toshio Fukuda,et al.  The role of virus infection in virus-evolutionary genetic algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[16]  T. Fukuda,et al.  Evolutionary transition on Virus-Evolutionary Genetic Algorithm , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[17]  H. Kise,et al.  A branch-and-bound algorithm with fuzzy inference for a permutation flowshop scheduling problem , 1997 .

[18]  H. Ishibuchi,et al.  Multi-objective scheduling with fuzzy due-date , 1998 .

[19]  H. Ishii,et al.  Fuzzy due-date scheduling problem with fuzzy processing time , 1999 .

[20]  Maciej Hapke,et al.  Scheduling under Fuzziness , 2000 .

[21]  Masatoshi Sakawa,et al.  Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms , 2000, Eur. J. Oper. Res..

[22]  Adam Kasperski,et al.  Minimizing maximum lateness in a single machine scheduling problem with fuzzy processing times and fuzzy due dates , 2001 .

[23]  Adam Kasperski,et al.  On two single machine scheduling problems with fuzzy processing times and fuzzy due dates , 2003, Eur. J. Oper. Res..

[24]  Baoding Liu Uncertainty Theory: An Introduction to its Axiomatic Foundations , 2004 .

[25]  Izzettin Temiz,et al.  Fuzzy branch-and-bound algorithm for flow shop scheduling , 2004, J. Intell. Manuf..

[26]  Adam Kasperski,et al.  Possible and necessary optimality of solutions in the single machine scheduling problem with fuzzy parameters , 2004, Fuzzy Sets Syst..

[27]  Hiroaki Ishii,et al.  One Machine Scheduling Problem with Fuzzy Random Due-Dates , 2005, Fuzzy Optim. Decis. Mak..

[28]  Hiroaki Ishii,et al.  Single Machine Batch Scheduling Problem with Resource Dependent Setup and Processing Time in the Presence of Fuzzy Due Date , 2005, Fuzzy Optim. Decis. Mak..

[29]  Matthew J. Liberatore,et al.  Critical Path Analysis With Fuzzy Activity Times , 2008, IEEE Transactions on Engineering Management.

[30]  Reza Tavakkoli-Moghaddam,et al.  The use of a fuzzy multi-objective linear programming for solving a multi-objective single-machine scheduling problem , 2010, Appl. Soft Comput..

[31]  Dehua Xu,et al.  Single machine due date assignment scheduling problem with customer service level in fuzzy environment , 2010, Appl. Soft Comput..

[32]  Tarun Bhaskar,et al.  A heuristic method for RCPSP with fuzzy activity times , 2011, Eur. J. Oper. Res..

[33]  Amit Kumar Maity,et al.  One machine multiple-product problem with production-inventory system under fuzzy inequality constraint , 2011, Appl. Soft Comput..