Process and engineering aspects of carbon capture by ionic liquids

Abstract The accumulation of greenhouse gases, leading to global warming necessitated the research for efficient and recyclable CO2 capture solvents. Ionic liquids (ILs) and IL-based solvents have paved the way for a new generation of highly efficient, economic, and eco-friendly CO2 capture solvents. This paper discusses the process of synthesizing different ILs and IL-based solvents, emphasizing the merits and demerits of different processes, followed by the characterization tools and techniques, and the important considerations in developing novel ILs. An extension of characterization is the screening process. Properties of synthesized ILs and IL-based solvents have been discussed in detail, along with properties of hybrid IL-based solvents. The highly tunable nature of ILs leads to a multitude of possible ILs and IL-based solvents that can be customized for specific requirements. The latter part of the paper describes various modelling and simulation techniques used to analyse and predict the CO2-IL interactions. In each section, the trends and technology used, are analysed and discussed, duly emphasizing the latest advances. The paper concludes with a discussion on the prospects and challenges in adopting ILs and IL-based solvents in CO2 capture.

[1]  Zhitao Sun,et al.  Research on Synthesis, Characterization and CO2 Absorption of Functional Room Temperature Ionic Liquids , 2020 .

[2]  D. Fu,et al.  Effects of concentration and viscosity on the absorption of CO2 in [N1111][Gly] promoted MDEA (methyldiethanolamine) aqueous solution , 2016 .

[3]  Wei Shi,et al.  Theoretical and experimental studies of CO2 and H2 separation using the 1-ethyl-3-methylimidazolium acetate ([emim][CH3COO]) ionic liquid. , 2012, The journal of physical chemistry. B.

[4]  Xiaoyan Luo,et al.  Cooperative CO2 absorption by amino acid-based ionic liquids with balanced dual sites , 2020, RSC advances.

[5]  C. Airoldi,et al.  Preparation of ethylenediamine-anchored cellulose and determination of thermochemical data for the interaction between cations and basic centers at the solid/liquid interface. , 2006, Carbohydrate research.

[6]  S. Dai,et al.  Preorganization and Cooperation for Highly Efficient and Reversible Capture of Low-Concentration CO2 by Ionic Liquids. , 2017, Angewandte Chemie.

[7]  You-ting Wu,et al.  Low-viscous fluorine-substituted phenolic ionic liquids with high performance for capture of CO2 , 2015 .

[8]  Omar M. Basha,et al.  Development of a Conceptual Process for Selective Capture of CO2 from Fuel Gas Streams Using Two TEGO Ionic Liquids as Physical Solvents , 2014 .

[9]  Jianzhong Liu,et al.  Graphene Nanoplatelet and Reduced Graphene Oxide Functionalized by Ionic Liquid for CO2 Capture , 2018 .

[10]  Wei Li,et al.  A novel Amino Functionalized Ionic Liquid/Organic Solvent with low viscosity for CO2 capture. , 2020, Environmental science & technology.

[11]  Luhong Zhang,et al.  Highly efficient and reversible CO2 capture by imidazolate-based ether-functionalized ionic liquids with a capture transforming process , 2016 .

[12]  Jiayin Yuan,et al.  Main-chain poly(ionic liquid)-derived nitrogen-doped micro/mesoporous carbons for CO2 capture and selective aerobic oxidation of alcohols , 2017, 1812.11014.

[13]  Sibo Wang,et al.  Imidazolium Ionic Liquids, Imidazolylidene Heterocyclic Carbenes, and Zeolitic Imidazolate Frameworks for CO2 Capture and Photochemical Reduction. , 2016, Angewandte Chemie.

[14]  Á. Irabien,et al.  Synthesis and characterization of Magnetic Ionic Liquids (MILs) for CO2 separation , 2014 .

[15]  D. Macfarlane,et al.  Mechanisms of low temperature capture and regeneration of CO2 using diamino protic ionic liquids. , 2016, Physical chemistry chemical physics : PCCP.

[16]  Fusheng Liu,et al.  Efficient One Pot Capture and Conversion of CO2 into Quinazoline-2,4(1H,3H)-diones Using Triazolium-Based Ionic Liquids , 2020 .

[17]  Xiangping Zhang,et al.  A Novel Dual Amino-Functionalized Cation-Tethered Ionic Liquid for CO2 Capture , 2013 .

[18]  Chongli Zhong,et al.  Fabrication of mixed-matrix membrane containing metal–organic framework composite with task-specific ionic liquid for efficient CO2 separation , 2016 .

[19]  Alireza Baghban,et al.  Prediction carbon dioxide solubility in presence of various ionic liquids using computational intelligence approaches , 2015 .

[20]  Zuoming Zhou,et al.  Dual-functionalized ionic liquid biphasic solvent for carbon dioxide capture: High-efficiency and energy saving. , 2020, Environmental science & technology.

[21]  Vishwesh Venkatraman,et al.  Predicting CO2 capture of ionic liquids using machine learning , 2017 .

[22]  Joan F Brennecke,et al.  Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide: comparison to other ionic liquids. , 2007, Accounts of chemical research.

[23]  Jasper Knight,et al.  The impacts of climate change on terrestrial Earth surface systems , 2013 .

[24]  Xiangping Zhang,et al.  Enhanced CO2 capture by binary systems of pyridinium-based ionic liquids and porous ZIF-8 particles , 2019, The Journal of Chemical Thermodynamics.

[25]  Liwei Sun,et al.  Bi-functionalized ionic liquid porous copolymers for CO2 adsorption and conversion under ambient pressure , 2020 .

[26]  M. Bilad,et al.  Synergistic effects of highly selective ionic liquid confined in nanocages: Exploiting the three component mixed matrix membranes for CO2 capture , 2020 .

[27]  Thijs J. H. Vlugt,et al.  Solubilities of CO2, CH4, C2H6, and SO2 in ionic liquids and Selexol from Monte Carlo simulations , 2016, J. Comput. Sci..

[28]  J. Brennecke,et al.  Encapsulation of Ionic Liquids with an Aprotic Heterocyclic Anion (AHA-IL) for CO2 Capture: Preserving the Favorable Thermodynamics and Enhancing the Kinetics of Absorption. , 2018, The journal of physical chemistry. B.

[29]  J. Coutinho,et al.  The polarity effect upon the methane solubility in ionic liquids: a contribution for the design of ionic liquids for enhanced CO2/CH4 and H2S/CH4 selectivities , 2011 .

[30]  Luciano T. Costa,et al.  Double Salt Ionic Liquids Based on Ammonium Cations and Their Application for CO2 Capture , 2016 .

[31]  A. Henni,et al.  Incorporation of acetate-based ionic liquids into a zeolitic imidazolate framework (ZIF-8) as efficient sorbents for carbon dioxide capture , 2018 .

[32]  Liang‐Nian He,et al.  CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion , 2011 .

[33]  M. Watanabe,et al.  Hydrogen bonds in protic ionic liquids and their correlation with physicochemical properties. , 2011, Chemical communications.

[34]  E. Rubin,et al.  Technical and Economic Assessments of Ionic Liquids for Pre-Combustion CO2 Capture at IGCC Power Plants , 2017 .

[35]  R. Darbeau Nuclear Magnetic Resonance (NMR) Spectroscopy: A Review and a Look at Its Use as a Probative Tool in Deamination Chemistry , 2006 .

[36]  Harry D. Pratt,et al.  Screening for High Conductivity/Low Viscosity Ionic Liquids Using Product Descriptors , 2017, Molecular informatics.

[37]  Xinyu Wang,et al.  The study of bicyclic amidine-based ionic liquids as promising carbon dioxide capture agents , 2020 .

[38]  Tianxiang Zhao,et al.  Low-viscous diamino protic ionic liquids with fluorine-substituted phenolic anions for improving CO2 reversible capture , 2018, Journal of Molecular Liquids.

[39]  S. Einloft,et al.  Designing silica xerogels containing RTIL for CO2 capture and CO2/CH4 separation: Influence of ILs anion, cation and cation side alkyl chain length and ramification. , 2020, Journal of environmental management.

[40]  S. Einloft,et al.  Hybrid alkoxysilane-functionalized urethane-imide-based poly(ionic liquids) as a new platform for carbon dioxide capture , 2017 .

[41]  Collin R. Becker,et al.  Low Pressure Hydrocarbon Solubility in Room Temperature Ionic Liquids Containing Imidazolium Rings Interpreted Using Regular Solution Theory , 2005 .

[42]  Jie Ren,et al.  Potential for Using Simple 1,2,4-Triazole Salt Solutions as Highly Efficient CO2 Absorbents with Low Reaction Enthalpies , 2013 .

[43]  Amornvadee Veawab,et al.  Corrosion Behavior of Carbon Steel in the CO2 Absorption Process Using Aqueous Amine Solutions , 1999 .

[44]  J. Nicholas Thermogravimetric Analysis , 1954, Nature.

[45]  J. Zhu,et al.  Novel CO2-capture derived from the basic ionic liquids orientated on mesoporous materials. , 2014, ACS applied materials & interfaces.

[46]  A. Klamt,et al.  COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids , 2000 .

[48]  S. K. Biswal,et al.  Development of novel hybrid ionic fluids for efficient CO2 capture and cellulose dissolution , 2020 .

[49]  J. Cabral,et al.  Sol-gel encapsulation: an efficient and versatile immobilization technique for cutinase in non-aqueous media. , 2006, Journal of biotechnology.

[50]  A. Salleo,et al.  Multi-phase microstructures drive exciton dissociation in neat semicrystalline polymeric semiconductors , 2015 .

[51]  Jixiao Wang,et al.  PVAm–PIP/PS Composite Membrane with High Performance for CO2/N2 Separation , 2013 .

[52]  João A. P. Coutinho,et al.  High pressure CO2 solubility in N-methyl-2-hydroxyethylammonium protic ionic liquids , 2011 .

[53]  D. Fu,et al.  Investigation of the absorption performance and viscosity for CO2 capture process using [Bmim][Gly] promoted MDEA (N-methyldiethanolamine) aqueous solution , 2015 .

[54]  T. Deming,et al.  Synthesis of polypeptides by ring-opening polymerization of α-amino acid N-carboxyanhydrides. , 2012, Topics in current chemistry.

[55]  M. Stadtherr,et al.  Aspen Plus supported analysis of the post-combustion CO2 capture by chemical absorption using the [P2228][CNPyr] and [P66614][CNPyr]AHA Ionic Liquids , 2018, International Journal of Greenhouse Gas Control.

[56]  D. Macfarlane,et al.  Base-rich diamino protic ionic liquid mixtures for enhanced CO2 capture , 2017 .

[57]  Valderrama Angel,et al.  High-temperature electrolysis , 2016 .

[58]  W. Shi,et al.  Molecular simulations and experimental studies of solubility and diffusivity for pure and mixed gases of H2, CO2, and Ar absorbed in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]). , 2010, The journal of physical chemistry. B.

[59]  B. Van der Bruggen,et al.  Application of artificial neural networks for estimation of solubility of acid gases (H2S and CO2) in 32 commonly ionic liquid and amine solutions , 2015 .

[60]  F. Mutelet,et al.  Application of Inverse Gas Chromatography and Regular Solution Theory for Characterization of Ionic Liquids , 2005 .

[61]  Yi Li,et al.  An N-rich metal-organic framework with an rht topology: high CO2 and C2 hydrocarbons uptake and selective capture from CH4. , 2014, Chemical communications.

[62]  R. Varma,et al.  Solvent-free sonochemical preparation of ionic liquids. , 2002, Organic letters.

[63]  S. Einloft,et al.  Supported ionic liquids as highly efficient and low-cost material for CO2/CH4 separation process , 2019, Heliyon.

[64]  I. Vankelecom,et al.  Supported protic ionic liquid membrane based on 3-(trimethoxysilyl)propan-1-aminium acetate for the highly selective separation of CO2 , 2017 .

[65]  E. Kryachko,et al.  Density functional theory: Foundations reviewed , 2014 .

[66]  Jing-Fang Huang,et al.  A New Strategy for Synthesis of Novel Classes of Room-Temperature Ionic Liquids Based on Complexation Reaction of Cations , 2006 .

[67]  K. Ghandi A Review of Ionic Liquids, Their Limits and Applications , 2014 .

[68]  C. Drummond,et al.  Large aggregated ions found in some protic ionic liquids. , 2009, Journal of Physical Chemistry B.

[69]  R. Quadrelli,et al.  The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion , 2007 .

[70]  Hongwei Ren,et al.  Exploiting the hydrophilic role of natural deep eutectic solvents for greening CO2 capture , 2018, Journal of Cleaner Production.

[71]  J. Dupont,et al.  A Rational Approach to CO2 Capture by Imidazolium Ionic Liquids: Tuning CO2 Solubility by Cation Alkyl Branching. , 2015, ChemSusChem.

[72]  D. Fu,et al.  Absorption performance of CO2 in high concentrated [Bmim][Lys]-MDEA aqueous solution , 2016 .

[73]  Zuoming Zhou,et al.  A novel biphasic solvent of amino-functionalized ionic liquid for CO2 capture: High efficiency and regenerability , 2018 .

[74]  M. Rezakazemi,et al.  Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning , 2018 .

[75]  Seong H. Kim,et al.  Characterization of crystalline cellulose in biomass: Basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG , 2013, Korean Journal of Chemical Engineering.

[76]  Xiangping Zhang,et al.  Gas separation by ionic liquids: A theoretical study , 2018, Chemical Engineering Science.

[77]  M. B. Abdul Rahman,et al.  Molecular simulation on the stability and adsorption properties of choline-based ionic liquids/IRMOF-1 hybrid composite for selective H2S/CO2 capture. , 2020, Journal of hazardous materials.

[78]  K. Sirkar,et al.  Solubilities of CO2 and Helium in an Ionic Liquid Containing Poly(amidoamine) Dendrimer Gen 0 , 2013 .

[79]  L. Neves,et al.  Development of Ion-Jelly® membranes , 2013 .

[80]  Jung Min Lee,et al.  Hybrid membranes of nanostructrual copolymer and ionic liquid for carbon dioxide capture , 2017 .

[81]  Thomas J. Macdonald,et al.  Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs , 2018, Small Methods.

[82]  Paul J Dyson,et al.  Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation. , 2004, Chemical communications.

[83]  B. F. Goodrich,et al.  Equimolar CO(2) absorption by anion-functionalized ionic liquids. , 2010, Journal of the American Chemical Society.

[84]  T. Behnke,et al.  High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles , 2014 .

[85]  Z. Zhao,et al.  Cellulosic poly(ionic liquid)s: synthesis, characterization and application in the cycloaddition of CO2 to epoxides , 2015 .

[86]  Rafiqul Gani,et al.  A New Decomposition-Based Computer-Aided Molecular/Mixture Design Methodology for the Design of Optimal Solvents and Solvent Mixtures , 2005 .

[87]  J. Dupont,et al.  Carbon Dioxide Capture by Aqueous Ionic Liquid Solutions. , 2017, ChemSusChem.

[88]  Zuoming Zhou,et al.  How did the corrosion inhibitor work in amino-functionalized ionic liquids for CO2 capture: Quantum chemical calculation and experimental , 2019 .

[89]  Armin D. Ebner,et al.  State-of-the-art Adsorption and Membrane Separation Processes for Carbon Dioxide Production from Carbon Dioxide Emitting Industries , 2009 .

[90]  S. Kaliaguine,et al.  Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT , 2019, The Canadian Journal of Chemical Engineering.

[91]  F. Mutelet,et al.  Solubility of CO2 in 1-butyl-3-methylimidazolium diethylene-glycolmonomethylethersulfate and trihexyl(tetradecyl)phosphonium dodecyl-benzenesulfonate , 2013 .

[92]  F. Feyzi,et al.  Towards water-insensitive CO2-binding organic liquids for CO2 absorption: Effect of amines as promoter , 2020 .

[93]  David Hopkinson,et al.  Amino acid-functionalized ionic liquid solid sorbents for post-combustion carbon capture. , 2013, ACS applied materials & interfaces.

[94]  J. Cabral,et al.  Probing the microenvironment of sol-gel entrapped cutinase: the role of added zeolite NaY. , 2008, Journal of biotechnology.

[95]  J. Silvestre-Albero,et al.  Carbon-supported ionic liquids as innovative adsorbents for CO₂ separation from synthetic flue-gas. , 2015, Journal of colloid and interface science.

[96]  D. Gutiérrez-Tauste,et al.  CO2 Capture in Ionic Liquids: A Review of Solubilities and Experimental Methods , 2013 .

[97]  Amir H. Mohammadi,et al.  Application of decision tree learning in modelling CO2 equilibrium absorption in ionic liquids , 2017 .

[98]  Yi He,et al.  CO2 capture with polyamine-based protic ionic liquid functionalized mesoporous silica , 2019 .

[99]  M. Gomes,et al.  Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate , 2006 .

[100]  S. Saravanamurugan,et al.  Amine-functionalized amino acid-based ionic liquids as efficient and high-capacity absorbents for CO(2). , 2014, ChemSusChem.

[101]  A. Mohammadi,et al.  Rigorous modeling of CO2 equilibrium absorption in ionic liquids , 2017 .

[102]  K. Han,et al.  Efficient CO(2) capture by porous, nitrogen-doped carbonaceous adsorbents derived from task-specific ionic liquids. , 2012, ChemSusChem.

[103]  Kazuki Yoshida,et al.  New glyme–cyclic imide lithium salt complexes as thermally stable electrolytes for lithium batteries , 2010 .

[104]  Shuangquan Zhang,et al.  Encapsulated ionic liquids for CO2 capture , 2020 .

[105]  Xiangfeng Tian,et al.  CO2 removal in tray tower by using AAILs activated MDEA aqueous solution , 2018, Energy.

[106]  S. Einloft,et al.  Enhancement of CO2/N2 selectivity and CO2 uptake by tuning concentration and chemical structure of imidazolium-based ILs immobilized in mesoporous silica , 2020 .

[107]  D. Rashtchian,et al.  Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate , 2016 .

[108]  T. A. Hatton,et al.  Amine-Based Ionic Liquid for CO2 Capture and Electrochemical or Thermal Regeneration , 2020 .

[109]  Xiangping Zhang,et al.  Ionic liquids tailored amine aqueous solution for pre-combustion CO2 capture: Role of imidazolium-based ionic liquids , 2015 .

[110]  A. Kraslawski,et al.  A novel process design for CO2 capture and H2S removal from the syngas using ionic liquid , 2019, Journal of Cleaner Production.

[111]  Amir AghaKouchak,et al.  Water and climate: Recognize anthropogenic drought , 2015, Nature.

[112]  J. Brennecke,et al.  Anion effects on gas solubility in ionic liquids. , 2005, The journal of physical chemistry. B.

[113]  B. F. Goodrich,et al.  Experimental Measurements of Amine-Functionalized Anion-Tethered Ionic Liquids with Carbon Dioxide , 2011 .

[114]  J. J. Rodríguez,et al.  From kinetics to equilibrium control in CO2 capture columns using Encapsulated Ionic Liquids (ENILs) , 2018, Chemical Engineering Journal.

[115]  Thomas Foo,et al.  Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids. , 2008, The journal of physical chemistry. B.

[116]  S. Einloft,et al.  Hybrid Ionic Liquid–Silica Xerogels Applied in CO2 Capture , 2019, Applied Sciences.

[117]  D. Macfarlane,et al.  High CO2 absorption by diamino protic ionic liquids using azolide anions. , 2018, Chemical communications.

[118]  Xiuli Wang,et al.  Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision , 2017 .

[119]  Ioannis G. Economou,et al.  CO2 selective metal organic framework ZIF-8 modified through ionic liquid encapsulation: A computational study , 2018, J. Comput. Sci..

[120]  J. José,et al.  Nonspherical armoured bubble vibration. , 2017, Soft matter.

[121]  Xiangping Zhang,et al.  Dual amino-functionalised phosphonium ionic liquids for CO2 capture. , 2009, Chemistry.

[122]  Zhengjie Li,et al.  Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIF-8 for Membrane-Based CO2 Capture. , 2015, Angewandte Chemie.

[123]  M. Mirarab,et al.  Intelligent Prediction of CO2 Capture in Propyl Amine Methyl Imidazole Alanine Ionic Liquid: An Artificial Neural Network Model , 2015 .

[124]  M. Izadyar,et al.  Carbon Dioxide Absorption by the Imidazolium-Amino Acid Ionic Liquids, Kinetics, and Mechanism Approach. , 2018, The journal of physical chemistry. A.

[125]  C. Qian,et al.  Long-Chain Fatty Acid-Based Phosphonium Ionic Liquids with Strong Hydrogen-Bond Basicity and Good Lipophilicity: Synthesis, Characterization, and Application in Extraction , 2015 .

[126]  N. Gizli,et al.  Ionic liquid containing amine-based silica aerogels for CO2 capture by fixed bed adsorption , 2020 .

[127]  T. Nokami,et al.  CO2 Solubility in Ether Functionalized Ionic Liquids on Mole Fraction and Molarity Scales , 2016 .

[128]  Alireza Baghban,et al.  Estimating hydrogen sulfide solubility in ionic liquids using a machine learning approach , 2014 .

[129]  F. Martínez,et al.  Recent advances in the synthesis and applications of metal organic frameworks doped with ionic liquids for CO2 adsorption , 2017 .

[130]  Yingying Zhang,et al.  Screening of conventional ionic liquids for carbon dioxide capture and separation , 2016 .

[131]  D. Lourdin,et al.  Choline chloride vs choline ionic liquids for starch thermoplasticization. , 2017, Carbohydrate polymers.

[132]  A. Mehdizadeh,et al.  Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate , 2010 .

[133]  I. Marrucho,et al.  Gas Permeation Properties of Fluorinated Ionic Liquids , 2013 .

[134]  C. Eckert,et al.  Reversible ionic liquids designed for facile separations , 2010 .

[135]  G. Maurer,et al.  Solubility of CO2, CO, and H2 in the ionic liquid [bmim][PF6] from Monte Carlo simulations. , 2005, The journal of physical chemistry. B.

[136]  Alper Uzun,et al.  CO2 separation from flue gas mixture using [BMIM][BF4]/MOF composites: Linking high-throughput computational screening with experiments , 2020, Chemical Engineering Journal.

[137]  H. Sardón,et al.  Ionic Polyurethanes as a New Family of Poly(ionic liquid)s for Efficient CO2 Capture , 2017 .

[138]  J. Zou,et al.  Efficient Absorption of CO2 by Introduction of Intramolecular Hydrogen Bonding in Chiral Amino Acid Ionic Liquids , 2018 .

[139]  E. Soroush,et al.  CO2 absorption by ionic liquids and deep eutectic solvents , 2020 .

[140]  Chunming Xu,et al.  Absorption Performance and Mechanism of CO2 in Aqueous Solutions of Amine-Based Ionic Liquids , 2015 .

[141]  Y. Sang,et al.  Benzimidazole-based hyper-cross-linked poly(ionic liquid)s for efficient CO2 capture and conversion , 2020 .

[142]  G. Maurer,et al.  Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate , 2013 .

[143]  K. A. Kurnia,et al.  High pressure solubility of CH4, N2O and N2 in 1-butyl-3-methylimidazolium dicyanamide: Solubilities, selectivities and soft-SAFT modeling , 2016 .

[144]  Byung-chul Lee,et al.  High-Pressure Phase Behavior of Carbon Dioxide with Ionic Liquids: 1-Alkyl-3-methylimidazolium Trifluoromethanesulfonate , 2008 .

[145]  K. M. Gupta Tetracyanoborate based ionic liquids for CO2 capture: From ab initio calculations to molecular simulations , 2016 .

[146]  Yifeng Chen,et al.  Supported ionic liquid sorbents for CO2 capture from simulated flue-gas , 2018, Chinese Journal of Chemical Engineering.

[147]  Hideto Matsuyama,et al.  An amino acid ionic liquid-based tough ion gel membrane for CO2 capture. , 2015, Chemical communications.

[148]  K. Kudo,et al.  Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes , 2003 .

[149]  R. Varma,et al.  An expeditious solvent-free route to ionic liquids using microwaves , 2001 .

[150]  Xiaoyan Ji,et al.  Experimental study of CO2 absorption in aqueous cholinium-based ionic liquids , 2017 .

[151]  Xiaoyan Luo,et al.  Decreasing the Viscosity in CO2 Capture by Amino-Functionalized Ionic Liquids through the Formation of Intramolecular Hydrogen Bond. , 2016, The journal of physical chemistry. B.

[152]  Jiawei Wang,et al.  New process development and process evaluation for capturing CO2 in flue gas from power plants using ionic liquid [emim][Tf2N] , 2020, Chinese Journal of Chemical Engineering.

[153]  Q. Meng,et al.  Designing amino-based ionic liquids for improved carbon capture: One amine binds two CO2 , 2018, AIChE Journal.

[154]  W. Shi,et al.  Absorption of CO2 in the ionic liquid 1-n-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([hmim][FEP]): a molecular view by computer simulations. , 2009, The journal of physical chemistry. B.

[155]  Ashok Khanna,et al.  CO2 absorption studies in amino acid-anion based ionic liquids , 2015 .

[156]  Zuoming Zhou,et al.  Performance and reaction kinetics of CO2 absorption into AMP solution with [Hmim][Gly] activator , 2016 .

[157]  Hai‐Long Jiang,et al.  Incorporation of Imidazolium-Based Poly(ionic liquid)s into a Metal–Organic Framework for CO2 Capture and Conversion , 2018 .

[158]  Jun Zhao,et al.  Alternative pathways for efficient CO2 capture by hybrid processes—A review , 2018 .

[159]  S. Hamad,et al.  Role of Ionic Liquid [EMIM]+[SCN]- in the Adsorption and Diffusion of Gases in Metal-Organic Frameworks. , 2018, ACS applied materials & interfaces.

[160]  Qingling Liu,et al.  Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization. , 2021, Journal of environmental sciences.

[161]  Alper Uzun,et al.  Improving Gas Separation Performance of ZIF-8 by [BMIM][BF4] Incorporation: Interactions and Their Consequences on Performance , 2017 .

[162]  M. Shiflett,et al.  Phase Behavior of Carbon Dioxide in Ionic Liquids: [emim][Acetate], [emim][Trifluoroacetate], and [emim][Acetate] + [emim][Trifluoroacetate] Mixtures , 2009 .

[163]  R. Bottom Chapter 3. Thermogravimetric Analysis , 2008 .

[165]  S. Dai,et al.  Highly efficient CO2 capture by tunable alkanolamine-based ionic liquids with multidentate cation coordination. , 2012, Chemical communications.

[166]  William F. Schneider,et al.  Molecular Design of High Capacity, Low Viscosity, Chemically Tunable Ionic Liquids for CO2 Capture , 2010 .

[167]  Tiezhu Su,et al.  High pressure adsorption of CO2 on MCM-41 grafted with quaternary ammonium ionic liquids , 2017 .

[168]  D. Macfarlane,et al.  Amino acid based poly(ionic liquid) materials for CO2 capture: Effect of anion , 2019, Journal of Molecular Liquids.

[169]  Luhong Zhang,et al.  Investigation of glycerol-derived binary and ternary systems in CO2 capture process , 2017 .

[170]  Jason E. Bara,et al.  Room-Temperature Ionic Liquids: Temperature Dependence of Gas Solubility Selectivity , 2008 .

[171]  D. Richon,et al.  Screening of ionic liquids for gas separation using COSMO-RS and comparison between performances of ionic liquids and aqueous alkanolamine solutions , 2020, Chemical Engineering Communications.

[172]  Rakesh Kumar,et al.  CO2 absorption and kinetic study in ionic liquid amine blends , 2016 .

[173]  Joan F. Brennecke,et al.  High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems , 2001 .

[174]  Jason E. Bara,et al.  Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes , 2009 .

[175]  O. F. Dawodu,et al.  Degradation of alkanolamine blends by carbon dioxide , 1996 .

[176]  N. Gathergood,et al.  Biodegradation studies of ionic liquids. , 2010, Chemical Society reviews.

[177]  Y. Xiong,et al.  Novel imidazolium‐based poly(ionic liquid)s: preparation, characterization, and absorption of CO2 , 2012 .

[178]  A. Henni,et al.  Carbon Capture Performance of Seven Novel Immidazolium and Pyridinium Based Ionic Liquids , 2017 .

[179]  R. Garrett,et al.  Virology: Independent virus development outside a host , 2005, Nature.

[180]  S. Dai,et al.  Multi-Molar Absorption of CO2 by the Activation of Carboxylate Groups in Amino Acid Ionic Liquids. , 2016, Angewandte Chemie.

[181]  Dae-Won Park,et al.  Absorption of Carbon Dioxide into Aqueous Solution of Sodium Glycinate , 2008 .

[182]  S. Pinho,et al.  Selection and characterization of non-ideal ionic liquids mixtures to be used in CO2 capture , 2020, Fluid Phase Equilibria.

[183]  Xiaofei Zeng,et al.  Absorption of Carbon Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor: Mass Transfer Study , 2011 .

[184]  K. Seddon,et al.  Influence of chloride, water, and organic solvents on the physical properties of ionic liquids , 2000 .

[185]  M. Rahimpour,et al.  The ability of artificial neural network in prediction of the acid gases solubility in different ionic liquids , 2015 .

[186]  Guido F Pauli,et al.  Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. , 2018, Journal of natural products.

[187]  Ji-qin Zhu,et al.  Solubility of CO2 in Acetone, 1-Butyl-3-methylimidazolium Tetrafluoroborate, and Their Mixtures , 2010 .

[188]  R. Ratti Ionic Liquids: Synthesis and Applications in Catalysis , 2014 .

[189]  R. Martínez-Palou,et al.  Absorption of CO2 with Amino Acid‐Based Ionic Liquids and Corresponding Amino Acid Precursors , 2017 .

[190]  N. Hashim,et al.  Supported ionic liquid membranes (SILMs) as a contactor for selective absorption of CO2/O2 by aqueous monoethanolamine (MEA) , 2020 .

[191]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[192]  J. Brennecke,et al.  Why Is CO2 so soluble in imidazolium-based ionic liquids? , 2004, Journal of the American Chemical Society.

[193]  Yamil J. Colón,et al.  Absorption of Carbon Dioxide in Two Binary Mixtures of Ionic Liquids , 2013 .

[194]  Kaiqin Xu,et al.  Enzymatically-boosted ionic liquid gas separation membranes using carbonic anhydrase of biomass origin , 2016 .

[195]  Yan Guo,et al.  Significant improvements in CO₂ capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions. , 2014, Angewandte Chemie.

[196]  A. Maiti Theoretical screening of ionic liquid solvents for carbon capture. , 2009, ChemSusChem.

[197]  W. Bonrath,et al.  An improved preparation of ionic liquids by ultrasound , 2002 .

[198]  Paul Scovazzo,et al.  Solubility, Diffusivity, and Permeability of Gases in Phosphonium-Based Room Temperature Ionic Liquids: Data and Correlations , 2007 .

[199]  Nan Liu,et al.  A novel hydrophilic amino acid ionic liquid [C2OHmim][Gly] as aqueous sorbent for CO2 capture , 2016 .

[200]  E. Drioli,et al.  Encyclopedia of Membranes , 2016 .

[201]  F. Zhang,et al.  Ditetraalkylammonium amino acid ionic liquids as CO₂ absorbents of high capacity. , 2011, Environmental science & technology.

[202]  Chih-Hung Huang,et al.  A Review of CO2 Capture by Absorption and Adsorption , 2012 .

[203]  Yuanhang Qin,et al.  Comparison of mass transfer coefficients and desorption rates of CO2 absorption into aqueous MEA + ionic liquids solution , 2017 .

[204]  Haifeng Dong,et al.  Carbon capture with ionic liquids: overview and progress , 2012 .

[205]  Congmin Wang,et al.  Efficient capture of CO 2 from flue gas at high temperature by tunable polyamine‐based hybrid ionic liquids , 2019, AIChE Journal.

[206]  S. Dai,et al.  New Insights into CO2 Absorption Mechanisms with Amino-Acid Ionic Liquids. , 2016, ChemSusChem.

[207]  Jianqiu Chen,et al.  Properties of aqueous amine based protic ionic liquids and its application for CO2 quick capture , 2020 .

[208]  Ismael Díaz,et al.  Ionic liquids for post-combustion CO2 capture by physical absorption: Thermodynamic, kinetic and process analysis , 2017 .

[209]  Guangren Yu,et al.  Novel ionic liquids phase change solvents for CO2 capture , 2020 .

[210]  Wenlong Wang,et al.  Ionic Liquid/Zn-PPh3 Integrated Porous Organic Polymers Featuring Multifunctional Sites: Highly Active Heterogeneous Catalyst for Cooperative Conversion of CO2 to Cyclic Carbonates , 2016 .

[211]  Xiangping Zhang,et al.  Protic ionic liquids with low viscosity for efficient and reversible capture of carbon dioxide , 2019, International Journal of Greenhouse Gas Control.

[212]  E. Rubin,et al.  Systems Analysis of Physical Absorption of CO2 in Ionic Liquids for Pre-Combustion Carbon Capture. , 2018, Environmental science & technology.

[213]  C. Berthomieu,et al.  Fourier transform infrared (FTIR) spectroscopy , 2009, Photosynthesis Research.

[214]  Junhua Huang,et al.  Carbon dioxide adsorption by zinc-functionalized ionic liquid impregnated into bio-templated mesoporous silica beads , 2016 .

[215]  T. Mohammadi,et al.  Ionic liquid-modified Pebax® 1657 membrane filled by ZIF-8 particles for separation of CO2 from CH4, N2 and H2 , 2017 .

[216]  D. Moreno,et al.  Encapsulated Ionic Liquids to Enable the Practical Application of Amino Acid-Based Ionic Liquids in CO2 Capture , 2018, ACS Sustainable Chemistry & Engineering.

[217]  Xun Xu,et al.  Hypercrosslinked mesoporous poly(ionic liquid)s with high ionic density for efficient CO2 capture and conversion into cyclic carbonates , 2018 .

[218]  Youqing Shen,et al.  Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. , 2006, Chemistry.

[219]  Haoran Li,et al.  Carbon dioxide capture by superbase-derived protic ionic liquids. , 2010, Angewandte Chemie.

[220]  Stanley I. Sandler,et al.  Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions , 2010 .

[221]  Weize Wu,et al.  Efficient and Reversible Absorption of CO2 by Functional Deep Eutectic Solvents , 2018, Energy & Fuels.

[222]  Christopher W. Jones,et al.  Monolith-Supported Amine-Functionalized Mg2(dobpdc) Adsorbents for CO2 Capture. , 2017, ACS applied materials & interfaces.

[223]  J. Bara,et al.  Molecular Simulation of Ionic Polyimides and Composites with Ionic Liquids as Gas-Separation Membranes. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[224]  Yingjie Xu CO2 absorption behavior of azole-based protic ionic liquids: Influence of the alkalinity and physicochemical properties , 2017 .

[225]  Jae Hun Lee,et al.  Hybrid membranes based on ionic-liquid-functionalized poly(vinyl benzene chloride) beads for CO2 capture , 2019, Journal of Membrane Science.

[226]  S. Einloft,et al.  Cellulose based poly(ionic liquids): Tuning cation-anion interaction to improve carbon dioxide sorption , 2018 .

[227]  V. Garcia,et al.  Gelatin and pregelatinized starch orally disintegrating films: Properties and stability of vitamin C , 2017 .

[228]  Arunprakash T. Karunanithi,et al.  A systematic screening methodology towards exploration of ionic liquids for CO 2 capture processes , 2016 .

[229]  Bong-Seop Lee,et al.  Screening of ionic liquids for CO2 capture using the COSMO-SAC model , 2015 .

[230]  F. Montagnaro,et al.  Post-combustion CO 2 capture: On the potentiality of amino acid ionic liquid as modifying agent of mesoporous solids , 2018 .

[231]  Yixin Ma,et al.  Ionic liquid-based CO2 capture in power plants for low carbon emissions , 2018, International Journal of Greenhouse Gas Control.

[232]  A. Samadi,et al.  Polymerized Ionic Liquid Sorbents for CO2 Separation , 2010 .

[233]  Yong-liang Xu,et al.  CO2/CH4 and H2S/CO2 Selectivity by Ionic Liquids in Natural Gas Sweetening , 2017 .

[234]  E. Kamio,et al.  Quantum Mechanical and Molecular Dynamics Simulations of Dual-Amino-Acid Ionic Liquids for CO2 Capture , 2016 .

[235]  Mahendra Kumar,et al.  Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture , 2017 .

[236]  D. Deng,et al.  Solubilities and Thermodynamic Properties of CO2 in Four Azole-Based Deep Eutectic Solvents , 2018, Journal of Chemical & Engineering Data.

[237]  Liang‐Nian He,et al.  Efficient CO2 capture by tertiary amine-functionalized ionic liquids through Li+-stabilized zwitterionic adduct formation , 2014, Beilstein journal of organic chemistry.

[238]  Yi He,et al.  CO2 adsorption by polyamine-based protic ionic liquid-functionalized mesoporous silica: regenerability and influence of flue gas contaminants , 2020, Journal of Materials Science.

[239]  T. Vlugt,et al.  Solubility of CO2 and CH4 in Ionic Liquids: Ideal CO2/CH4 Selectivity , 2014 .

[240]  A. Mohammad,et al.  Interfacial sealing and functionalization of polysulfone/SAPO-34 mixed matrix membrane using acetate-based ionic liquid in post-impregnation for CO2 capture , 2017 .

[241]  Haoran Li,et al.  Tuning the basicity of ionic liquids for equimolar CO2 capture. , 2011, Angewandte Chemie.

[242]  M. Gomes,et al.  Improvement of carbon dioxide absorption by mixing poly(ethylene glycol) dimethyl ether with ammonium-based ionic liquids , 2017 .

[243]  Zhibing Zhang,et al.  Anhydrous “Dry Ionic Liquids”: A promising absorbent for CO2 capture , 2020 .

[244]  Zuoming Zhou,et al.  An efficient absorbent of amine-based amino acid-functionalized ionic liquids for CO2 capture: High capacity and regeneration ability , 2016 .

[245]  Amit Kumar,et al.  Enhanced CO2 Adsorption and Separation in Ionic-Liquid-Impregnated Mesoporous Silica MCM-41: A Molecular Simulation Study , 2018 .

[246]  Zuoming Zhou,et al.  Evaluation of the Multi-amine Functionalized Ionic Liquid for Efficient Postcombustion CO2 Capture , 2016 .

[247]  L. Robeson,et al.  The upper bound revisited , 2008 .

[248]  F. Larachi,et al.  Ionic liquids for CO2 capture—Development and progress , 2010 .

[249]  Ying-jie Zhou,et al.  Designing Supported Ionic Liquids (ILs) within Inorganic Nanosheets for CO₂ Capture Applications. , 2016, ACS applied materials & interfaces.

[250]  S. Einloft,et al.  CO2 capture: Tuning cation-anion interaction in urethane based poly(ionic liquids) , 2016 .

[251]  Á. Irabien,et al.  Carbon dioxide capture by [emim][Ac] ionic liquid in a polysulfone hollow fiber membrane contactor , 2016 .

[252]  Haifeng Dong,et al.  Thermodynamic Modeling and Assessment of Ionic Liquid-Based CO2 Capture Processes , 2014 .

[253]  A. Mehdizadeh,et al.  Solubility and Diffusion of H2S and CO2 in the Ionic Liquid 1-(2-Hydroxyethyl)-3-methylimidazolium Tetrafluoroborate , 2010 .

[254]  Zhongde Dai,et al.  Precombustion CO2 Capture in Polymeric Hollow Fiber Membrane Contactors Using Ionic Liquids: Porous Membrane versus Nonporous Composite Membrane , 2016 .

[255]  Xiangping Zhang,et al.  Carbon membranes for CO2 removal: Status and perspectives from materials to processes , 2020, Chemical Engineering Journal.

[256]  P. Fan,et al.  Graphene oxide functionalized by poly(ionic liquid)s for carbon dioxide capture , 2017 .

[257]  Yanan Cao,et al.  Capture of CO2 in carbon nanotube bundles supported with room-temperature ionic liquids: A molecular simulation study , 2018, Chemical Engineering Science.

[258]  Fateme Rezaei,et al.  Carbon Capture and Utilization Update , 2017 .

[259]  Á. Irabien,et al.  Hybrid Solvent ([emim][Ac]+water) To Improve the CO2 Capture Efficiency in a PVDF Hollow Fiber Contactor , 2017 .

[260]  Yunbai Luo,et al.  CO2 Capture by Imidazolate-Based Ionic Liquids: Effect of Functionalized Cation and Dication , 2013 .

[261]  A. Pádua,et al.  Nonpolar, polar, and associating solutes in ionic liquids. , 2006, The journal of physical chemistry. B.

[262]  John Gräsvik,et al.  Methods of Synthesis and Purification of Ionic Liquids , 2016 .

[263]  Youguo Yan,et al.  CO2-philic WS2 laminated membranes with a nanoconfined ionic liquid , 2018 .

[264]  E. Reimhult,et al.  Surface-active ionic liquids for palladium-catalysed cross coupling in water: effect of ionic liquid concentration on the catalytically active species† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra07757b , 2017, RSC advances.

[265]  Fadwa T. Eljack,et al.  A systematic visual methodology to design ionic liquids and ionic liquid mixtures: Green solvent alternative for carbon capture , 2016, Comput. Chem. Eng..

[266]  Zhibing Zhang,et al.  Dual Lewis Base Functionalization of Ionic Liquids for Highly Efficient and Selective Capture of H2 S. , 2014, ChemPlusChem.

[267]  C. Eckert,et al.  Switchable Solvents Consisting of Amidine/Alcohol or Guanidine/Alcohol Mixtures , 2008 .

[268]  A. Henni,et al.  Markedly improved CO2 uptake using imidazolium-based ionic liquids confined into HKUST-1 frameworks , 2019, Microporous and Mesoporous Materials.

[269]  Vikas Madhav Nagarajan,et al.  Ionic liquids, deep eutectic solvents and liquid polymers as green solvents in carbon capture technologies: a review , 2020, Environmental Chemistry Letters.

[270]  Zuoming Zhou,et al.  Designing and Screening of Multi-Amino-Functionalized Ionic Liquid Solution for CO2 Capture by Quantum Chemical Simulation , 2018 .

[271]  Guannan Wang,et al.  Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity. , 2008, Chemical communications.

[272]  J. Palomar,et al.  Cation and anion effect on the biodegradability and toxicity of imidazolium- and choline-based ionic liquids. , 2020, Chemosphere.

[273]  Chong Chen,et al.  Surface engineering of a chromium metal-organic framework with bifunctional ionic liquids for selective CO2 adsorption: Synergistic effect between multiple active sites. , 2018, Journal of colloid and interface science.

[274]  Guokai Cui,et al.  Highly efficient SO2 capture by dual functionalized ionic liquids through a combination of chemical and physical absorption. , 2012, Chemical communications.

[275]  C. Peters,et al.  Solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide , 2007 .

[276]  Elizabeth J. Biddinger,et al.  COSMO-RS Studies: Structure–Property Relationships for CO2 Capture by Reversible Ionic Liquids , 2012 .

[277]  S. Dai,et al.  Tuning the physicochemical properties of diverse phenolic ionic liquids for equimolar CO2 capture by the substituent on the anion. , 2012, Chemistry.

[278]  G. Danilatos,et al.  Review and outline of environmental SEM at present , 1991 .

[279]  J. Kiefer,et al.  Chain length effects on the vibrational structure and molecular interactions in the liquid normal alkyl alcohols. , 2018, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[280]  J. Brennecke,et al.  Competing reactions of CO2 with cations and anions in azolide ionic liquids. , 2014, ChemSusChem.

[281]  J. Brennecke,et al.  Effect of Cation on Physical Properties and CO2 Solubility for Phosphonium-Based Ionic Liquids with 2-Cyanopyrrolide Anions. , 2015, The journal of physical chemistry. B.

[282]  Ahmad B. Albadarin,et al.  Simulation of CO2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors , 2016 .

[283]  Mingwen Zhao,et al.  Understanding CO2 capture kinetics and energetics by ionic liquids with molecular dynamics simulation , 2020, RSC Advances.

[284]  Zhibing Zhang,et al.  Low-Viscosity Triethylbutylammonium Acetate as a Task-Specific Ionic Liquid for Reversible CO2 Absorption , 2011 .

[285]  A. Yokozeki,et al.  Carbon Dioxide Capture Using Ionic Liquid 1-Butyl-3-methylimidazolium Acetate , 2010 .

[286]  Patricia Luis,et al.  Facilitated transport of CO2 and SO2 through Supported Ionic Liquid Membranes (SILMs) , 2009 .

[287]  Zachary W. Windom,et al.  CO2 sorption in triethyl(butyl)phosphonium 2-cyanopyrrolide ionic liquid via first principles simulations , 2019, Journal of Molecular Liquids.

[288]  Haifeng Dong,et al.  The Research Progress of CO2 Capture with Ionic Liquids , 2012 .

[289]  Kai Sundmacher,et al.  Systematic Method for Screening Ionic Liquids as Extraction Solvents Exemplified by an Extractive Desulfurization Process , 2017 .

[290]  N. Mahinpey,et al.  CO2 adsorption using amino acid ionic liquid-impregnated mesoporous silica sorbents with different textural properties , 2019, Microporous and Mesoporous Materials.

[291]  Xinsheng Peng,et al.  Enhanced Gas Separation through Nanoconfined Ionic Liquid in Laminated MoS2 Membrane. , 2017, ACS applied materials & interfaces.

[292]  Yingjie Xu,et al.  Tuning the strength of cation coordination interactions of dual functional ionic liquids for improving CO2 capture performance , 2020 .

[293]  Suojiang Zhang,et al.  Solubilities of CO2 in hydroxyl ammonium ionic liquids at elevated pressures , 2007 .

[294]  S. Einloft,et al.  Ionic liquids composed of linear amphiphilic anions: Synthesis, physicochemical characterization, hydrophilicity and interaction with carbon dioxide , 2017 .

[295]  L. Cardozo-Filho,et al.  Low viscosity protic ionic liquid for CO 2 /CH 4 separation: Thermophysical and high-pressure phase equilibria for diethylammonium butanoate , 2018 .

[296]  Roland Kalb,et al.  Ionic liquids for post-combustion CO2 absorption , 2010 .

[297]  J. C. Jansen,et al.  Poly(vinylbenzyl chloride)-based poly(ionic liquids) as membranes for CO2 capture from flue gas , 2017 .

[298]  Yingjie Xu,et al.  Alkanolamine-based dual functional ionic liquids with multidentate cation coordination and pyrazolide anion for highly efficient CO2 capture at relatively high temperature , 2017 .

[299]  Ning Wang,et al.  Gas-Phase and Ionic Liquid Experimental and Computational Studies of Imidazole Acidity and Carbon Dioxide Capture. , 2019, The Journal of organic chemistry.

[300]  Maggel Deetlefs,et al.  Improved preparations of ionic liquids using microwave irradiation , 2003 .

[301]  A. Indarto,et al.  H2S–CO2 Separation Using Room Temperature Ionic Liquid [BMIM][Br] , 2014 .

[302]  Junliang Wang,et al.  Two-stage interaction performance of CO2 absorption into biphasic solvents: Mechanism analysis, quantum calculation and energy consumption , 2020 .

[303]  A. Flores‐Tlacuahuac,et al.  An optimization approach for CO2 capture using ionic liquids , 2017 .

[304]  Tong Jiang,et al.  Impacts of 1.5 °C and 2 °C global warming on winter snow depth in Central Asia. , 2019, The Science of the total environment.

[305]  P. Darvishi,et al.  Post-combustion CO2 capture using [Emim][Ac] ionic liquid, piperazine activated N-methyldiethanolamine and promoted K2CO3 in a bench scale , 2017 .

[306]  F. Liu,et al.  Mechanism and Kinetics of CO2 Absorption into an Aqueous Solution of a Triamino-Functionalized Ionic Liquid , 2017 .

[307]  Shuangyue Liu,et al.  Carbon dioxide capture by amino-functionalized ionic liquids: DFT based theoretical analysis substantiated by FT-IR investigation , 2016 .

[308]  C. Peters,et al.  Activity Coefficients at Infinite Dilution in Methylimidazolium Nitrate Ionic Liquids , 2011 .

[309]  J. Choi,et al.  Deep eutectic solvents as attractive media for CO2 capture , 2016 .

[310]  G. Romanos,et al.  Enhanced CO2 capture in binary mixtures of 1-alkyl-3-methylimidazolium tricyanomethanide ionic liquids with water. , 2013, The journal of physical chemistry. B.

[311]  Yaotai Jiang,et al.  Solubilities and Thermodynamic Properties of Carbon Dioxide in Guaiacol-Based Deep Eutectic Solvents , 2017 .

[312]  Hua Zhao,et al.  Ternary Deep Eutectic Solvents Tasked for Carbon Dioxide Capture , 2014 .

[313]  Luís M. N. B. F. Santos,et al.  Evaluation of COSMO-RS for the prediction of LLE and VLE of alcohols + ionic liquids , 2007 .

[314]  Vishwesh Venkatraman,et al.  Predicting ionic liquid melting points using machine learning , 2018, Journal of Molecular Liquids.

[315]  Joan F. Brennecke,et al.  Ionic Liquids for CO2 Capture and Emission Reduction , 2010 .

[316]  H. Tseng,et al.  Enhanced H2/CH4 and H2/CO2 separation by carbon molecular sieve membrane coated on titania modified alumina support: Effects of TiO2 intermediate layer preparation variables on interfacial adhesion , 2016 .

[317]  Jian-Gang Lu,et al.  CO2 capture using a functional protic ionic liquid by membrane absorption , 2017 .

[318]  Kamil Paduszynski,et al.  Viscosity of Ionic Liquids: An Extensive Database and a New Group Contribution Model Based on a Feed-Forward Artificial Neural Network , 2014, J. Chem. Inf. Model..

[319]  R. O. Jones,et al.  Density functional theory: Its origins, rise to prominence, and future , 2015 .

[320]  Lifang Chen,et al.  Computer-Aided Design of Ionic Liquids as Absorbent for Gas Separation Exemplified by CO2 Capture Cases , 2018, ACS Sustainable Chemistry & Engineering.

[321]  Faiz Ullah Shah,et al.  Ether Functionalized Choline Tethered Amino Acid Ionic Liquids for Enhanced CO2 Capture , 2016 .

[322]  Xiangping Zhang,et al.  Combination of ionic liquids with membrane technology: a new approach for CO2 separation , 2016 .

[323]  Xiaoyan Ji,et al.  Carbon Dioxide Capture with Ionic Liquids and Deep Eutectic Solvents: A New Generation of Sorbents. , 2017, ChemSusChem.

[324]  O. Y. Orhan,et al.  Kinetics of CO2 capture by ionic liquid—CO2 binding organic liquid dual systems , 2016 .

[325]  R. Ludwig,et al.  Hydrogen bonding in protic ionic liquids: reminiscent of water. , 2009, Angewandte Chemie.

[326]  Zhongde Dai,et al.  Mathematical modeling and validation of CO2 mass transfer in a membrane contactor using ionic liquids for pre-combustion CO2 capture , 2017 .

[327]  Nilay Shah,et al.  An overview of CO2 capture technologies , 2010 .

[328]  P. Darvishi,et al.  Comparative evaluation of CO2 capture from flue gas by [Emim][Ac] ionic liquid, aqueous potassium carbonate (without activator) and MEA solutions in a packed column , 2016 .

[329]  F. Karadaş,et al.  Review on the Use of Ionic Liquids (ILs) as Alternative Fluids for CO2 Capture and Natural Gas Sweetening , 2010 .

[330]  Tuan B. H. Nguyen,et al.  Ionic Liquid as a Selective Capture Method of CO2 from Different Sources: Comparison with MEA , 2018 .

[331]  G. W. Meindersma,et al.  Solvent properties of functionalized ionic liquids for CO2 absorption , 2007 .

[332]  Jiale Li,et al.  Enhancement of CO2 capture performance of aqueous MEA by mixing with [NH2e-mim][BF4] , 2018, RSC advances.

[333]  S. Oswald X‐Ray Photoelectron Spectroscopy in Analysis of Surfaces , 2013 .

[334]  Xiangping Zhang,et al.  Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process. , 2017, Chemical reviews.

[335]  Cheng-Han Lin,et al.  Kinetic and heat duty study of aprotic heterocyclic anion-based dual functionalized ionic liquid solutions for carbon capture , 2020 .

[336]  Á. Irabien,et al.  Post-combustion CO2 capture by coupling [emim] cation based ionic liquids with a membrane contactor; Pseudo-steady-state approach , 2020 .

[337]  G. Maurer,et al.  Corrigendum to “Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate” [J. Chem. Thermodyn. 67 (2013) 55–62] , 2014 .

[338]  J. Flieger,et al.  Ionic Liquids Toxicity—Benefits and Threats , 2020, International journal of molecular sciences.

[339]  F. Mutelet,et al.  Solubility of carbon dioxide, nitrous oxide and methane in ionic liquids at pressures close to atmospheric , 2014 .

[340]  Sheng Dai,et al.  Low-Pressure Solubility of Carbon Dioxide in Room-Temperature Ionic Liquids Measured with a Quartz Crystal Microbalance , 2004 .

[341]  M. A. Bustam,et al.  Solubility of CO2 in pyridinium based ionic liquids , 2012 .

[342]  Sheng Dai,et al.  Examination of the Potential of Ionic Liquids for Gas Separations , 2005 .

[343]  C. Gautier,et al.  Misconceptions About the Greenhouse Effect , 2006 .

[344]  Siavash Riahi,et al.  The QSPR models to predict the solubility of CO2 in ionic liquids based on least-squares support vector machines and genetic algorithm-multi linear regression , 2017 .

[345]  A. Salleo,et al.  0 O ct 2 01 3 Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors , 2013 .

[346]  Synergistic Enhancement of CO2 Adsorption Capacity and Kinetics in Triethylenetetrammonium Nitrate Protic Ionic Liquid Functionalized SBA-15 , 2019, Energy & Fuels.

[347]  Hongchao Mao,et al.  Capsules of Reactive Ionic Liquids for Selective Capture of Carbon Dioxide at Low Concentrations. , 2020, ACS applied materials & interfaces.

[348]  L. Cavallo,et al.  Amino acid ionic liquids as potential candidates for CO2 capture: Combined density functional theory and molecular dynamics simulations , 2020, Chemical Physics Letters.

[349]  E. Drioli,et al.  Molecular Weight Cutoff , 2015 .

[350]  Alper Uzun,et al.  Tuning the Gas Separation Performance of CuBTC by Ionic Liquid Incorporation. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[351]  Ioanna Ntai,et al.  CO(2) capture by a task-specific ionic liquid. , 2002, Journal of the American Chemical Society.

[352]  A. A. Kiss,et al.  Novel pressure and temperature swing processes for CO2 capture using low viscosity ionic liquids , 2018, Separation and Purification Technology.

[353]  J. Torrecilla,et al.  Density and Molar Volume Predictions Using COSMO-RS for Ionic Liquids. An Approach to Solvent Design , 2007 .

[354]  A. Henni,et al.  Imidazolium based ionic liquids confined into mesoporous silica MCM-41 and SBA-15 for carbon dioxide capture , 2020 .

[355]  Zhiyong Zhou,et al.  Facilitated Separation of CO2 by Liquid Membranes and Composite Membranes with Task-Specific Ionic Liquids , 2016 .

[356]  Zhiyong Li,et al.  Tuning ionic liquids with imide-based anions for highly efficient CO2 capture through enhanced cooperations , 2018, Journal of CO2 Utilization.

[357]  B. F. Goodrich,et al.  Chemically tunable ionic liquids with aprotic heterocyclic anion (AHA) for CO(2) capture. , 2014, The journal of physical chemistry. B.