Facet oxidation of InGaAs/GaAs strained quantum‐well lasers

Aging tests were carried out on as‐cleaved InGaAs/GaAs strained quantum‐well ridge waveguide lasers. Although the lasers have immunity to sudden failure and have degradation rate as low as 2×10−5 h−1, after over 6000 h of operation, they readily suffered facet oxidation. The measured oxidation rate was comparable to that of GaAs quantum‐well lasers and one order of magnitude higher than that of lattice‐matched InGaAs/InP lasers. This high oxidation rate is considered to be caused by light absorption in the vicinity of the facet where the band gap is reduced because of the stress variation from biaxial to uniaxial.

[1]  A. R. Adams,et al.  Band-structure engineering for low-threshold high-efficiency semiconductor lasers , 1986 .

[2]  M. Okayasu,et al.  Erbium-doped fibre amplifiers with an extremely high gain coefficient of 11.0 dB/mW , 1990 .

[3]  H. Yonezu,et al.  Degradation of (AlGa)As DH lasers due to facet oxidation , 1978 .

[4]  Sadao Adachi,et al.  Material parameters of In1−xGaxAsyP1−y and related binaries , 1982 .

[5]  S. Uehara,et al.  Low-Threshold Strained-Layer InGaAs Ridge Waveguide Lasers , 1990 .

[6]  M. Ettenberg,et al.  Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers , 1990, IEEE Photonics Technology Letters.

[7]  T. Hayakawa,et al.  Facet degradations in Ga1−xAlxAs/Ga1−yAlyAs double‐heterostructure lasers , 1981 .

[8]  Paul Anthony Kirkby,et al.  Dislocation pinning in GaAs by the deliberate introduction of impurities , 1975 .

[9]  N. Chinone,et al.  Linewidth enhancement factor in strained quantum well lasers , 1989, IEEE Photonics Technology Letters.

[10]  H. Hasegawa,et al.  Anodic Oxidation of GaAs in Mixed Solutions of Glycol and Water , 1976 .

[11]  Carl W. Wilmsen,et al.  Initial oxidation and oxide/semiconductor interface formation on GaAs , 1979 .

[12]  M. Fukuda Facet oxidation of InGaAsP/InP and InGaAs/InP lasers , 1983 .

[13]  H. Brugger,et al.  Mapping of local temperatures on mirrors of GaAs/AlGaAs laser diodes , 1990 .

[14]  O. Ueda,et al.  Degradation of III–V Opto‐Electronic Devices , 1988 .

[15]  Kunishige Oe,et al.  Energy band‐gap shift with elastic strain in GaxIn1−xP epitaxial layers on (001) GaAs substrates , 1983 .

[16]  L. A. Coldren,et al.  Extremely wide modulation bandwidth in a low threshold current strained quantum well laser , 1988 .

[17]  M. Fukuda,et al.  Stable operation (over 5000 h) of high-power 0.98- mu m InGaAs-GaAs strained quantum well ridge waveguide lasers for pumping Er/sup 3+/-doped fiber amplifiers , 1990, IEEE Photonics Technology Letters.

[18]  C. Henry,et al.  Catastrophic damage of AlxGa1−xAs double‐heterostructure laser material , 1979 .

[19]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[20]  T. Torikai,et al.  Mirror degradation in AlGaAs double‐heterostructure lasers , 1979 .

[21]  Eli Yablonovitch,et al.  Reduction of lasing threshold current density by the lowering of valence band effective mass , 1986 .

[22]  Ying-Chih Chen,et al.  Long‐lived InGaAs quantum well lasers , 1989 .

[23]  Mitsuo Fukuda,et al.  High-power 0.98 mu m GaInAs strained quantum well lasers for Er/sup 3+/-doped fibre amplifier , 1989 .

[24]  Fred H. Pollak,et al.  Piezo-Electroreflectance in Ge, GaAs, and Si , 1968 .

[25]  C. Jagannath,et al.  Stress variations and relief in patterned GaAs grown on mismatched substrates , 1988 .

[26]  M. Okayasu,et al.  High-power operation in 0.98- mu m strained-layer InGaAs-GaAs single-quantum-well ridge waveguide lasers , 1990, IEEE Photonics Technology Letters.

[27]  S. L. Yellen,et al.  Inhibited dark-line defect formation in strained InGaAs/AlGaAs quantum well lasers , 1990, IEEE Photonics Technology Letters.

[28]  James J. Coleman,et al.  Characterization of InGaAs‐GaAs strained‐layer lasers with quantum wells near the critical thickness , 1989 .