Stochastic search using the natural gradient

To optimize unknown 'fitness' functions, we present Natural Evolution Strategies, a novel algorithm that constitutes a principled alternative to standard stochastic search methods. It maintains a multinormal distribution on the set of solution candidates. The Natural Gradient is used to update the distribution's parameters in the direction of higher expected fitness, by efficiently calculating the inverse of the exact Fisher information matrix whereas previous methods had to use approximations. Other novel aspects of our method include optimal fitness baselines and importance mixing, a procedure adjusting batches with minimal numbers of fitness evaluations. The algorithm yields competitive results on a number of benchmarks.

[1]  A. P. Wieland,et al.  Evolving neural network controllers for unstable systems , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[2]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[3]  Risto Miikkulainen,et al.  Incremental Evolution of Complex General Behavior , 1997, Adapt. Behav..

[4]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[5]  Shun-ichi Amari,et al.  Why natural gradient? , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[6]  Sham M. Kakade,et al.  A Natural Policy Gradient , 2001, NIPS.

[7]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[8]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[9]  Stefan Schaal,et al.  Natural Actor-Critic , 2003, Neurocomputing.

[10]  Risto Miikkulainen,et al.  Efficient Reinforcement Learning through Symbiotic Evolution , 2004 .

[11]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[12]  Risto Miikkulainen,et al.  Efficient Non-linear Control Through Neuroevolution , 2006, ECML.

[13]  Tom Schaul,et al.  Fitness Expectation Maximization , 2008, PPSN.

[14]  Stefan Schaal,et al.  Natural Actor-Critic , 2003, Neurocomputing.

[15]  Tom Schaul,et al.  Natural Evolution Strategies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[16]  Jan Peters,et al.  Machine Learning for motor skills in robotics , 2008, Künstliche Intell..

[17]  Tom Schaul,et al.  Efficient natural evolution strategies , 2009, GECCO.