On the periodic Schrödinger–Boussinesq system

Abstract We study the local and global well-posedness of the periodic boundary value problem for the nonlinear Schrodinger–Boussinesq system. The existence of periodic traveling-wave solutions as well as the orbital stability of such solutions are also considered.

[1]  Carlos Matheus,et al.  Global Well-Posedness and Non-linear Stability of Periodic Traveling Waves for a Schrodinger-Benjamin-Ono System , 2007, math/0701786.

[2]  M. Grillakis,et al.  Existance and Uniqueness for Boussinesq type equations on a circle , 1996 .

[3]  A. Pastor,et al.  ON PERIODIC TRAVELING WAVES FOR THE KLEIN-GORDON-SCHRÖDINGER SYSTEM WITH YUKAWA INTERACTION , 2009 .

[4]  Luis Vega,et al.  A bilinear estimate with applications to the KdV equation , 1996 .

[5]  Tosio Kato Perturbation theory for linear operators , 1966 .

[6]  Jerry L. Bona,et al.  Stability of cnoidal waves , 2006, Advances in Differential Equations.

[7]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[8]  J. Bourgain,et al.  Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .

[9]  V. G. Makhankov,et al.  On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying boussinesq's equation , 1974 .

[10]  Gustavo Ponce,et al.  Interaction Equations for Short and Long Dispersive Waves , 1998 .

[11]  Rachel J. Steiner,et al.  The spectral theory of periodic differential equations , 1973 .

[12]  G. Ponce,et al.  Introduction to Nonlinear Dispersive Equations , 2009 .

[13]  Junkichi Satsuma,et al.  Soliton Solutions in a Diatomic Lattice System , 1979 .

[14]  J. Pava Nonlinear stability of periodic traveling wave solutions to the Schrödinger and the modified Korteweg–de Vries equations☆ , 2007 .

[15]  I. Iliev,et al.  Stability of periodic travelling shallow-water waves determined by Newton's equation , 2007, 0707.4365.

[16]  Luis Vega,et al.  Quadratic forms for the 1-D semilinear Schrödinger equation , 1996 .

[17]  J. B. McLeod THE SPECTRAL THEORY OF PERIODIC DIFFERENTIAL EQUATIONS , 1975 .

[18]  J. Pava,et al.  Periodic pulses of coupled nonlinear Schr\"odinger equations in optics , 2007 .

[19]  P. G. Drazin,et al.  ON THE STABILITY OF CNOIDAL WAVES , 1977 .

[20]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[21]  Paul F. Byrd,et al.  Handbook of elliptic integrals for engineers and scientists , 1971 .

[22]  J. Ginibre,et al.  On the Cauchy Problem for the Zakharov System , 1997 .

[23]  K. Spatschek,et al.  Stability of solitary-wave pulses in shape-memory alloys. , 1987, Physical review. B, Condensed matter.

[24]  L. Farah Local Solutions in Sobolev Spaces with Negative Indices for the “Good” Boussinesq Equation , 2008, 0805.2720.

[25]  J. Boussinesq,et al.  Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. , 1872 .

[26]  Bernard Deconinck,et al.  On the orbital ( in ) stability of spatially periodic stationary solutions of generalized Korteweg-de Vries equations , 2009 .

[27]  L. Farah Local and global solutions for the non-linear Schrödinger-Boussinesq system , 2008, Differential and Integral Equations.

[28]  Orlando Lopes Stability of solitary waves of some coupled systems , 2006 .

[29]  On Schrödinger-Boussinesq equations , 2004 .

[30]  Vladimir E. Zakharov,et al.  On stochastization of one-dimensional chains of nonlinear oscillators , 1974 .

[31]  YeYaojun GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS , 2005 .

[32]  Nikolaos Tzirakis,et al.  Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schr\ , 2006, math/0603595.