MEMS, microengineering and aerospace systems

Microelectronics processing technology spawned a new area of science and engineering exemplified by the acronyms MEMS (microelectromechanical systems) and NEMS (nanoelectromechanical systems). Microengineering is a multidisciplinary investigation of the physics and science of the submillimeter scale world and the application of this understanding to develop mass-producible microdevices and systems. Aerospace systems will benefit from microengineering technology due to reduced size, mass and power requirements for many standard functions. Microengineering can also enable precise control of surfaces and fluid dynamics. This paper provides an overview of microengineering relevant to aerospace systems. Special focus is given to fabrication and development of micropropulsion systems.

[1]  Richard S. Muller Heat and strain-sensitive thin-film transducers , 1983 .

[2]  Yu-Chong Tai,et al.  A practical thermopneumatic valve , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[3]  A. Glezer,et al.  The formation and evolution of synthetic jets , 1998 .

[4]  K. Breuer,et al.  Gaseous slip flow in long microchannels , 1997 .

[5]  D. F. Kostishack,et al.  Micro Air Vehicles for Optical Surveillance , 1999 .

[6]  Edward S. Piekos,et al.  DSMC modeling of micromechanical devices , 1995 .

[7]  Stuart A. Jacobson,et al.  Active control of streamwise vortices and streaks in boundary layers , 1998, Journal of Fluid Mechanics.

[8]  W. Ko,et al.  A study on deep etching of silicon using ethylene-diamine-pyrocatechol-water , 1986 .

[9]  Steve Oleson,et al.  Chemical Microthruster Options , 1996 .

[10]  O. Brand,et al.  Micromachined thermally based CMOS microsensors , 1998, Proc. IEEE.

[11]  Jeffrey H. Lang,et al.  MICRO-HEAT ENGINES, GAS TURBINES, AND ROCKET ENGINES -THE MIT MICROENGINE PROJECT- , 1997 .

[12]  H. Baltes,et al.  Integrated semiconductor magnetic field sensors , 1986, Proceedings of the IEEE.

[13]  William W. Hansen,et al.  Direct-write UV-laser microfabrication of 3D structures in lithium-aluminosilicate glass , 1997, Photonics West.

[14]  P. Barth,et al.  Silicon micromechanical devices , 1983 .

[15]  U. Ingard,et al.  Acoustic Circulation Effects and the Nonlinear Impedance of Orifices , 1950 .

[16]  Henry Helvajian,et al.  Micro- and Nanotechnology for Space Systems , 1997 .

[17]  Kenneth S. Breuer,et al.  A performance evaluation of MEMS-based micronozzles , 1997 .

[18]  M. Mehregany,et al.  Integrated fabrication of polysilicon mechanisms , 1988 .

[19]  D Hash,et al.  A hybrid DSMC/Navier-Stokes solver , 1995 .

[20]  William W. Hansen,et al.  Batch-fabricated CW microthrusters for kilogram-class spacecraft , 1999 .

[21]  Wen Li,et al.  Design, Analysis and Fabrication of a Vaporizing Liquid Micro-Thruster , 1997 .

[22]  D. Maillefer,et al.  A high-performance silicon micropump for an implantable drug delivery system , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[23]  H. Emmerich,et al.  A novel micromachined magnetic-field sensor , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[24]  Ruben Rathnasingham,et al.  Coupled Fluid-Structural Characteristics of Actuators for Flow Control , 1997 .

[25]  K. Bean,et al.  Anisotropic etching of silicon , 1978, IEEE Transactions on Electron Devices.

[26]  Juergen Mueller Thruster Options for Microspacecraft : A Review and Evaluation of Existing Hardware and Emerging Technologies , 1997 .

[27]  J. Meindl,et al.  Optimization of the Hydrazine‐Water Solution for Anisotropic Etching of Silicon in Integrated Circuit Technology , 1975 .

[28]  N. Yazdi,et al.  A high sensitivity capacitive microaccelerometer with a folded-electrode structure , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[29]  Kenneth S. Breuer,et al.  Viscous Effects in Supersonic MEMS-Fabricated Micronozzles , 1998, Micro-Electro-Mechanical Systems (MEMS).

[30]  Michael Amitay,et al.  Modification of the Aerodynamic Characteristics of Bluff Bodies Using Fluidic Actuators , 1997 .

[31]  A. Reisman,et al.  The Controlled Etching of Silicon in Catalyzed Ethylenediamine‐Pyrocatechol‐Water Solutions , 1979 .

[32]  H. Sandmaier,et al.  A micro membrane pump with electrostatic actuation , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.

[33]  R. B. Cohen,et al.  Digital MicroPropulsion , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[34]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[35]  Albert K. Henning,et al.  Microfluidic MEMS , 1998, 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339).

[36]  T. W. Haag Thrust stand for high‐power electric propulsion devices , 1991 .

[37]  J. Fluitman,et al.  Integrated micro-liquid dosing system , 1991, [1993] Proceedings IEEE Micro Electro Mechanical Systems.

[38]  Henry Helvajian,et al.  Big benefits from tiny technologies: micro-nanotechnology applications in future space systems , 1997, Optics + Photonics.

[39]  J. O. Mur-Miranda,et al.  Power MEMS and microengines , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[40]  Victor M. Bright,et al.  Surface Micromachined Micro-Opto-Electro-Mechanical Systems , 1997 .