Size-dependent diffusion of membrane inclusions.

Experimentally determined diffusion constants are often used to elucidate the size and oligomeric state of membrane proteins and domains. This approach critically relies on the knowledge of the size-dependence of diffusion. We have used mesoscopic simulations to thoroughly quantify the size-dependent diffusion properties of membrane inclusions. For small radii R, we find that the lateral diffusion coefficient D is well described by the Saffman-Delbrück relation, which predicts a logarithmic decrease of D with R. However, beyond a critical radius Rc approximately hetam/(2etac) (h, bilayer thickness; etam/c, viscosity of the membrane/surrounding solvent) we observe significant deviations and the emergence of an asymptotic scaling D approximately 1/R2. The latter originates from the asymptotic hydrodynamics and the inclusion's internal degrees of freedom that become particularly relevant on short timescales. In contrast to the lateral diffusion, the size dependence of the rotational diffusion constant Dr follows the predicted hydrodynamic scaling Dr approximately 1/R2 over the entire range of sizes studied here.

[1]  M. Edidin The state of lipid rafts: from model membranes to cells. , 2003, Annual review of biophysics and biomolecular structure.

[2]  R. S. Hodges,et al.  Lateral mobility of proteins in liquid membranes revisited , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Mohamed Laradji,et al.  Dynamics of domain growth in self-assembled fluid vesicles. , 2004, Physical review letters.

[4]  P. Saffman,et al.  Brownian motion in biological membranes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Grace Brannigan,et al.  Solvent-free simulations of fluid membrane bilayers. , 2004, The Journal of chemical physics.

[6]  S. Dunn,et al.  The lateral diffusion of selectively aggregated peptides in giant unilamellar vesicles. , 2003, Biophysical journal.

[7]  Kurt Kremer,et al.  Tunable generic model for fluid bilayer membranes. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[9]  R. Cherry,et al.  Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbrück equations. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[10]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[11]  Matthias Weiss,et al.  Challenges and Artifacts in Quantitative Photobleaching Experiments , 2004, Traffic.

[12]  S. Granick,et al.  Limits of the hydrodynamic no-slip boundary condition. , 2002, Physical review letters.

[13]  R. Austin,et al.  Rotational diffusion of cell surface components by time-resolved phosphorescence anisotropy. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[14]  B. Hughes,et al.  The translational and rotational drag on a cylinder moving in a membrane , 1981, Journal of Fluid Mechanics.

[15]  Ask F Jakobsen,et al.  Constant-pressure and constant-surface tension simulations in dissipative particle dynamics. , 2005, The Journal of chemical physics.

[16]  O. Farago “Water-free” computer model for fluid bilayer membranes , 2003, cond-mat/0304203.

[17]  I. Vattulainen,et al.  How would you integrate the equations of motion in dissipative particle dynamics simulations , 2003 .

[18]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[19]  S. Singer,et al.  The Fluid Mosaic Model of the Structure of Cell Membranes , 1972, Science.

[20]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[21]  E. Sackmann,et al.  On two-dimensional passive random walk in lipid bilayers and fluid pathways in biomembranes , 1979, The Journal of Membrane Biology.

[22]  A. Minton Lateral diffusion of membrane proteins in protein-rich membranes. A simple hard particle model for concentration dependence of the two-dimensional diffusion coefficient. , 1989, Biophysical journal.

[23]  Ole G. Mouritsen,et al.  Life - as a matter of fat : the emerging science of lipidomics , 2005 .

[24]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[25]  D. Engelman Membranes are more mosaic than fluid , 2005, Nature.

[26]  Reinhard Lipowsky,et al.  Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations , 2002 .

[27]  J. Korlach,et al.  Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  H Schindler,et al.  Single-molecule microscopy on model membranes reveals anomalous diffusion. , 1997, Biophysical journal.

[29]  M. Weiss,et al.  Close-up view of the modifications of fluid membranes due to phospholipase A2 , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.