Geometry of loop quantum gravity on a graph

We discuss the meaning of geometrical constructions associated to loop quantum gravity states on a graph. In particular, we discuss the "twisted geometries" and derive a simple relation between these and Regge geometries.

[1]  Elena Magliaro,et al.  LQG propagator from the new spin foams , 2009, 0905.4082.

[2]  E. Livine,et al.  The fine structure of SU(2) intertwiners from U(N) representations , 2009, 0911.3553.

[3]  Simone Speziale,et al.  Background-free propagation in loop quantum gravity , 2008, 0810.1978.

[4]  Complexifier coherent states for quantum general relativity , 2002, gr-qc/0206037.

[5]  Bianca Dittrich,et al.  Area–angle variables for general relativity , 2008, 0802.0864.

[6]  M. Bojowald Loop Quantum Cosmology , 2008, Living reviews in relativity.

[7]  L. Freidel,et al.  Quantum geometry from phase space reduction , 2009, 0902.0351.

[8]  A. Ashtekar,et al.  Background independent quantum gravity: a status report , 2004 .

[9]  B. Dittrich,et al.  (Broken) Gauge symmetries and constraints in Regge calculus , 2009, 0905.1670.

[10]  Carlo Rovelli Quantum gravity , 2008, Scholarpedia.

[11]  C. Rovelli,et al.  Triangulated Loop Quantum Cosmology: Bianchi IX and inhomogenous perturbations , 2009, 0911.2653.

[12]  Daniele Oriti,et al.  Encoding simplicial quantum geometry in group field theories , 2009, 0912.1546.

[13]  C. Rovelli,et al.  Stepping out of homogeneity in loop quantum cosmology , 2008, 0805.4585.

[14]  T. Thiemann Modern Canonical Quantum General Relativity: References , 2007 .

[15]  Eugenio Bianchi,et al.  Coherent spin-networks , 2009, Physical Review D.

[16]  B. Dittrich,et al.  Phase space descriptions for simplicial 4D geometries , 2008, 0807.2806.

[17]  Coherent states for canonical quantum general relativity and the infinite tensor product extension , 2001, gr-qc/0102038.

[18]  Simone Speziale,et al.  Twisted geometries: A geometric parametrisation of SU(2) phase space , 2010, 1001.2748.

[19]  C. Rovelli,et al.  Towards spinfoam cosmology , 2010, 1003.3483.

[20]  V. Bonzom From lattice BF gauge theory to area–angle Regge calculus , 2009, 0903.0267.

[21]  Quantizing Regge calculus , 1995, gr-qc/9512040.

[22]  C. Rovelli A new look at loop quantum gravity , 2010, 1004.1780.

[23]  L. Freidel,et al.  Twistors to twisted geometries , 2010, 1006.0199.

[24]  Carlo Rovelli,et al.  Loop space representation of quantum general relativity , 1988 .