Interactions, dynamics, and elasticity in charge-stabilized colloidal crystals

We describe real-space imaging measurements of the interactions and elastic properties of charge-stabilized colloidal crystals. Interactions between charge-stabilized latex spheres self-assembled into colloidal crystals are extracted from single-particle dynamics using new techniques in digital video microscopy. The spheres’ cooperative behavior makes possible simultaneous measurements of their crystals’ bulk moduli. Together, these measurements offer new insights into the microscopic origins of charge-stabilized colloidal crystals’ bulk elastic properties. In particular, they demonstrate that the crystals’ elastic properties cannot be ascribed to the linear superposition of pairwise interactions. This result highlights the potential pitfalls of using the conventional Derjaguin, Verwey, Landau, and Overbeek (DLVO) theory to describe the bulk properties of charge-stabilized colloidal suspensions.

[1]  Jean-Pierre Hansen,et al.  VAN DER WAALS-LIKE INSTABILITY IN SUSPENSIONS OF MUTUALLY REPELLING CHARGED COLLOIDS , 1997 .

[2]  K. Strandburg Bond-orientational order in condensed matter systems , 1992 .

[3]  Hunt,et al.  Consistent Surface Potentials from Bulk Suspension Properties , 1997, Journal of colloid and interface science.

[4]  G. Batchelor,et al.  Brownian diffusion of particles with hydrodynamic interaction , 1976, Journal of Fluid Mechanics.

[5]  R. Crandall,et al.  Melting of Crystalline Suspensions of Polystyrene Spheres , 1976 .

[6]  C. A. Murray,et al.  The microscopic dynamics of freezing in supercooled colloidal fluids , 1994 .

[7]  Jean-Pierre Hansen,et al.  Phase Transitions of the Lennard-Jones System , 1969 .

[8]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[9]  W. Russel,et al.  The retarded van der Waals interaction between spheres , 1982 .

[10]  David G. Grier,et al.  Like-charge attractions in metastable colloidal crystallites , 1997, Nature.

[11]  Libchaber,et al.  Confined Brownian motion. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Adel O. Sharif,et al.  Long-range electrostatic attraction between like-charge spheres in a charged pore , 1998, Nature.

[13]  D. Grier,et al.  When Like Charges Attract: The Effects of Geometrical Confinement on Long-Range Colloidal Interactions. , 1996, Physical review letters.

[14]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[15]  P. Chaikin,et al.  BCC-FCC, melting and reentrant transitions in colloidal crystals , 1982 .

[16]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[17]  Shunichi Sato,et al.  Direct Measurement of Interparticle Forces by the Optical Trapping Technique , 1997 .

[18]  J. Crocker Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres , 1997 .

[19]  T. Hashimoto,et al.  Novel Crystallization Process in Dilute Ionic Colloids , 1998 .

[20]  S. A. Cho,et al.  Role of lattice structure on the Lindemann fusion theory of metals , 1982 .

[21]  A. Vrij,et al.  Application of modern concepts in liquid state theory to concentrated particle dispersions , 1978 .

[22]  P. Chaikin,et al.  Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory , 1984 .

[23]  M. D. Carbajal-Tinoco,et al.  Static properties of confined colloidal suspensions. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  J. Gilvarry The Lindemann and Grüneisen Laws , 1956 .

[25]  Grier,et al.  Microscopic measurement of the pair interaction potential of charge-stabilized colloid. , 1994, Physical review letters.

[26]  Lobry,et al.  Diffusion of Brownian particles trapped between two walls: Theory and dynamic-light-scattering measurements. , 1996, Physical review. B, Condensed matter.

[27]  Fraden,et al.  Attractive potential between confined colloids at low ionic strength. , 1994, Physical review letters.

[28]  H. Versmold,et al.  Brownian motion : A tool to determine the pair potential between colloid particles , 1994 .