Efficient classical simulation of matchgate circuits with generalized inputs and measurements
暂无分享,去创建一个
[1] Daniel J. Brod,et al. Extending matchgates into universal quantum computation , 2011, 1106.1863.
[2] Scott Aaronson,et al. Bosonsampling is far from uniform , 2013, Quantum Inf. Comput..
[3] Sergey Bravyi,et al. Lagrangian representation for fermionic linear optics , 2004, Quantum Inf. Comput..
[4] Richard Jozsa,et al. Jordan-Wigner formalism for arbitrary 2-input 2-output matchgates and their classical simulation , 2015, Quantum Inf. Comput..
[5] B. Kraus,et al. Compressed quantum simulation of the Ising model. , 2011, Physical review letters.
[6] C. Beenakker,et al. Charge detection enables free-electron quantum computation. , 2004, Physical Review Letters.
[7] A. Kitaev,et al. Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.
[8] Kae Nemoto,et al. Efficient classical simulation of continuous variable quantum information processes. , 2002, Physical review letters.
[9] David P. DiVincenzo,et al. Encoded universality from a single physical interaction , 2001, Quantum Inf. Comput..
[10] B. Kraus,et al. Compressed simulation of evolutions of the X Y model , 2013, 1305.5895.
[11] Richard Jozsa,et al. Matchgate and space-bounded quantum computations are equivalent , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[12] J. Emerson,et al. Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.
[13] Richard Jozsa,et al. Classical simulation complexity of extended Clifford circuits , 2013, Quantum Inf. Comput..
[14] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[15] Emanuel Knill,et al. Fermionic Linear Optics and Matchgates , 2001, ArXiv.
[16] E. Knill. Bounds on the probability of success of postselected nonlinear sign shifts implemented with linear optics , 2003, quant-ph/0307015.
[17] D. DiVincenzo,et al. Fermionic Linear Optics Revisited , 2004, quant-ph/0403031.
[18] E. Knill,et al. A scheme for efficient quantum computation with linear optics , 2001, Nature.
[19] Andrew M. Childs,et al. The computational power of matchgates and the XY interaction on arbitrary graphs , 2013, Quantum Inf. Comput..
[20] Reck,et al. Experimental realization of any discrete unitary operator. , 1994, Physical review letters.
[21] E. Wigner,et al. Über das Paulische Äquivalenzverbot , 1928 .
[22] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..
[23] Scott Aaronson,et al. The computational complexity of linear optics , 2010, STOC '11.
[24] David P. DiVincenzo,et al. Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.
[25] Leslie G. Valiant,et al. Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..
[26] D. Gottesman. The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.
[27] Maarten Van den Nest,et al. Classical simulation of quantum computation, the gottesman-Knill theorem, and slightly beyond , 2008, Quantum Inf. Comput..
[28] M. Van den Nest,et al. Quantum matchgate computations and linear threshold gates , 2010, 1005.1143.
[29] R. Jozsa,et al. Matchgates and classical simulation of quantum circuits , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[30] R Raussendorf,et al. A one-way quantum computer. , 2001, Physical review letters.
[31] Sergey Bravyi. Universal quantum computation with the v=5/2 fractional quantum Hall state , 2006 .
[32] R. Jozsa,et al. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[33] Nathan Wiebe,et al. Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation , 2012, 1210.1783.
[34] Robert W Spekkens,et al. Negativity and contextuality are equivalent notions of nonclassicality. , 2006, Physical review letters.
[35] D. J. Brod,et al. Geometries for universal quantum computation with matchgates , 2012, 1207.2126.
[36] Dax Enshan Koh,et al. Further extensions of Clifford circuits and their classical simulation complexities , 2015, Quantum Inf. Comput..
[37] Richard Jozsa,et al. Invited Talk: Embedding Classical into Quantum Computation , 2008, MMICS.