Efficient classical simulation of matchgate circuits with generalized inputs and measurements

Matchgates are a restricted set of two-qubit gates known to be classically simulable under particular conditions. Specifically, if a circuit consists only of nearest-neighbour matchgates, an efficient classical simulation is possible if either (i) the input is a computational basis state and the simulation requires computing probabilities of multi-qubit outcomes (including also adaptive measurements), or (ii) if the input is an arbitrary product state, but the output of the circuit consists of a single qubit. In this paper we extend these results to show that matchgates are classically simulable even in the most general combination of these settings, namely, if the inputs are arbitrary product states, if the measurements are over arbitrarily many output qubits, and if adaptive measurements are allowed. This remains true even for arbitrary single-qubit measurements, albeit only in a weaker notion of classical simulation. These results make for an interesting contrast with other restricted models of computation, such as Clifford circuits or (bosonic) linear optics, where the complexity of simulation varies greatly under similar modifications.

[1]  Daniel J. Brod,et al.  Extending matchgates into universal quantum computation , 2011, 1106.1863.

[2]  Scott Aaronson,et al.  Bosonsampling is far from uniform , 2013, Quantum Inf. Comput..

[3]  Sergey Bravyi,et al.  Lagrangian representation for fermionic linear optics , 2004, Quantum Inf. Comput..

[4]  Richard Jozsa,et al.  Jordan-Wigner formalism for arbitrary 2-input 2-output matchgates and their classical simulation , 2015, Quantum Inf. Comput..

[5]  B. Kraus,et al.  Compressed quantum simulation of the Ising model. , 2011, Physical review letters.

[6]  C. Beenakker,et al.  Charge detection enables free-electron quantum computation. , 2004, Physical Review Letters.

[7]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[8]  Kae Nemoto,et al.  Efficient classical simulation of continuous variable quantum information processes. , 2002, Physical review letters.

[9]  David P. DiVincenzo,et al.  Encoded universality from a single physical interaction , 2001, Quantum Inf. Comput..

[10]  B. Kraus,et al.  Compressed simulation of evolutions of the X Y model , 2013, 1305.5895.

[11]  Richard Jozsa,et al.  Matchgate and space-bounded quantum computations are equivalent , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  J. Emerson,et al.  Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.

[13]  Richard Jozsa,et al.  Classical simulation complexity of extended Clifford circuits , 2013, Quantum Inf. Comput..

[14]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[15]  Emanuel Knill,et al.  Fermionic Linear Optics and Matchgates , 2001, ArXiv.

[16]  E. Knill Bounds on the probability of success of postselected nonlinear sign shifts implemented with linear optics , 2003, quant-ph/0307015.

[17]  D. DiVincenzo,et al.  Fermionic Linear Optics Revisited , 2004, quant-ph/0403031.

[18]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[19]  Andrew M. Childs,et al.  The computational power of matchgates and the XY interaction on arbitrary graphs , 2013, Quantum Inf. Comput..

[20]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[21]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[22]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[23]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[24]  David P. DiVincenzo,et al.  Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.

[25]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[26]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[27]  Maarten Van den Nest,et al.  Classical simulation of quantum computation, the gottesman-Knill theorem, and slightly beyond , 2008, Quantum Inf. Comput..

[28]  M. Van den Nest,et al.  Quantum matchgate computations and linear threshold gates , 2010, 1005.1143.

[29]  R. Jozsa,et al.  Matchgates and classical simulation of quantum circuits , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[31]  Sergey Bravyi Universal quantum computation with the v=5/2 fractional quantum Hall state , 2006 .

[32]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  Nathan Wiebe,et al.  Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation , 2012, 1210.1783.

[34]  Robert W Spekkens,et al.  Negativity and contextuality are equivalent notions of nonclassicality. , 2006, Physical review letters.

[35]  D. J. Brod,et al.  Geometries for universal quantum computation with matchgates , 2012, 1207.2126.

[36]  Dax Enshan Koh,et al.  Further extensions of Clifford circuits and their classical simulation complexities , 2015, Quantum Inf. Comput..

[37]  Richard Jozsa,et al.  Invited Talk: Embedding Classical into Quantum Computation , 2008, MMICS.