Unveiling the AGN in IC 883: Discovery of a parsec-scale radio jet

IC 883 is a luminous infrared galaxy (LIRG) classified as a starburst- active galactic nucleus (AGN) composite. In a previous study, we detected a low- luminosity AGN (LLAGN) radio candidate. Here, we report on our radio follow- up at three frequencies that provides direct and unequivocal evidence of the AGN activity in IC 883. Our analysis of archival X-ray data, together with the detection of a transient radio source with luminosity typical of bright supernovae, gives further evidence of the ongoing star formation activity, which dominates the energetics of the system. At sub- parsec scales, the radio nucleus has a core-jet morphology with the jet being a newly ejected component showing a subluminal proper motion of 0.6-1 c. The AGN contributes less than 2 per cent of the total IR luminosity of the system. The corresponding Eddington factor is similar to 10(-3), suggesting this is a low-accretion rate engine, as often found in LLAGNs. However, its high bolometric luminosity (similar to 10(44) erg s(-1)) agrees better with a normal AGN. This apparent discrepancy may just be an indication of the transition nature of the nucleus from a system dominated by star formation, to an AGN-dominated system. The nucleus has a strongly inverted spectrum and a turnover at similar to 4.4 GHz, thus qualifying as a candidate for the least luminous (L(5.0)GHz similar to 6.3 x 10(28) erg s(-1) Hz(-1)) and one of the youngest (similar to 3 x 10(3) yr) gigahertz-peaked spectrum (GPS) sources. If the GPS origin for the IC 883 nucleus is confirmed, then advanced mergers in the LIRG category are potentially key environments to unveil the evolution of GPS sources into more powerful radio galaxies.

[1]  W. Brandt,et al.  A NuSTAR SURVEY OF NEARBY ULTRALUMINOUS INFRARED GALAXIES , 2015, 1510.04453.

[2]  W. Duschl,et al.  The subarcsecond mid-infrared view of local active galactic nuclei – II. The mid-infrared–X-ray correlation , 2015, 1508.05065.

[3]  E. Lenc,et al.  BROADBAND SPECTRAL MODELING OF THE EXTREME GIGAHERTZ-PEAKED SPECTRUM RADIO SOURCE PKS B0008-421 , 2015, 1507.04819.

[4]  R. Beswick,et al.  A new period of activity in the core of NGC 660 , 2015, 1507.01781.

[5]  P. Edwards,et al.  The multifrequency parsec-scale structure of PKS 2254−367 (IC 1459): a luminosity-dependent break in morphology for the precursors of radio galaxies? , 2015, 1501.04393.

[6]  P. P. van der Werf,et al.  MOLECULAR GAS HEATING MECHANISMS, AND STAR FORMATION FEEDBACK IN MERGER/STARBURSTS: NGC 6240 AND Arp 193 AS CASE STUDIES , 2014, 1404.6090.

[7]  M. Prieto,et al.  EVIDENCE OF PARSEC-SCALE JETS IN LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI , 2014, 1403.6675.

[8]  G. Canalizo,et al.  STELLAR VELOCITY DISPERSION IN DISSIPATIVE GALAXY MERGERS WITH STAR FORMATION , 2013, 1310.6827.

[9]  Caltech,et al.  MID-INFRARED ATOMIC FINE-STRUCTURE EMISSION-LINE SPECTRA OF LUMINOUS INFRARED GALAXIES: SPITZER/IRS SPECTRA OF THE GOALS SAMPLE , 2013, 1309.4788.

[10]  F. Carrera,et al.  Studying the relationship between X-ray emission and accretion in AGN using the XMM-Newton bright serendipitous survey , 2013, 1305.0564.

[11]  A. Alberdi,et al.  EVN observations of the farthest and brightest ULIRGs in the local Universe: the case of IRAS 23365+3604 , 2012, 1201.5021.

[12]  E. Lenc,et al.  The radio core of the ultraluminous infrared galaxy F00183−7111: watching the birth of a quasar , 2011, 1107.3895.

[13]  CEA-Saclay,et al.  Defining the intrinsic AGN infrared spectral energy distribution and measuring its contribution to the infrared output of composite galaxies , 2011, 1102.1425.

[14]  A. Merloni,et al.  THREE-YEAR SWIFT–BAT SURVEY OF ACTIVE GALACTIC NUCLEI: RECONCILING THEORY AND OBSERVATIONS? , 2010, 1012.0302.

[15]  L. Kewley,et al.  COLA. III. RADIO DETECTION OF ACTIVE GALACTIC NUCLEUS IN COMPACT MODERATE LUMINOSITY INFRARED GALAXIES , 2010, 1006.2740.

[16]  L. Kewley,et al.  THE ROLE OF STARBURST–ACTIVE GALACTIC NUCLEUS COMPOSITES IN LUMINOUS INFRARED GALAXY MERGERS: INSIGHTS FROM THE NEW OPTICAL CLASSIFICATION SCHEME , 2009, 0911.3728.

[17]  E. Fomalont,et al.  Approaching Micro-Arcsecond Resolution with VSOP-2: Astrophysics and Technologies , 2009 .

[18]  A. Deller,et al.  e‐VLBI observations of GHz‐peaked spectrum radio sources in nearby galaxies from the AT20G survey , 2009, 0905.3219.

[19]  S. Satyapal,et al.  A SPITZER SPECTROSCOPIC SURVEY OF LOW-IONIZATION NUCLEAR EMISSION-LINE REGIONS: CHARACTERIZATION OF THE CENTRAL SOURCE , 2008, 0811.1252.

[20]  N. Abel,et al.  [Ne V] Emission in Optically Classified Starbursts , 2008, 0801.2766.

[21]  A. Merloni,et al.  Measuring the kinetic power of active galactic nuclei in the radio mode , 2007, 0707.3356.

[22]  M. Krause,et al.  Revised equipartition and minimum energy formula for magnetic field strength estimates from radio synchrotron observations , 2005, astro-ph/0507367.

[23]  P. Alexander,et al.  A high‐resolution study of the interstellar medium in the luminous IRAS galaxy Arp 193 , 2004 .

[24]  P. Edwards,et al.  Identification of a new low-redshift GHz-peaked spectrum radio source and implications for the GHz-peaked spectrum class , 2003 .

[25]  R. Sutherland,et al.  Jets: an environmental impact statement , 2003 .

[26]  T. D. Matteo,et al.  A Fundamental plane of black hole activity , 2003, astro-ph/0305261.

[27]  H. Tananbaum,et al.  X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy , 2003 .

[28]  E. Momjian,et al.  Very Long Baseline Array Continuum and H I Absorption Observations of the Ultraluminous Infrared Galaxy IRAS 17208–0014 , 2002, astro-ph/0212091.

[29]  S. Tyulbashev Physical conditions in faint gigahertz-peaked spectrum radio sources , 2001 .

[30]  R. McCray,et al.  Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 26/01/00 ON THE ABSORPTION OF X-RAYS IN THE INTERSTELLAR MEDIUM , 2000 .

[31]  Bernd Aschenbach,et al.  X-Ray Optics, Instruments, and Missions III , 2000 .

[32]  Ralf Siebenmorgen,et al.  Massive star formation in galaxies: radiative transfer models of the UV to millimetre emission of starburst galaxies , 2000 .

[33]  H. Rottgering,et al.  On the evolution of young radio-loud AGN , 2000, astro-ph/0002130.

[34]  J. Conway VLBI spectral absorption in AGN , 1999 .

[35]  H. Rottgering,et al.  Faint Gigahertz Peaked Spectrum sources and the evolution of young radio sources , 1998, astro-ph/9811453.

[36]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[37]  C. Lonsdale,et al.  The Starburst-AGN Connection. II. The Nature of Luminous Infrared Galaxies as Revealed by VLBI, VLA, Infrared, and Optical Observations , 1998 .

[38]  M. Dopita,et al.  Unification of the Radio and Optical Properties of Gigahertz Peak Spectrum and Compact Steep-Spectrum Radio Sources , 1997 .

[39]  Robert A. Shaw,et al.  Astronomical data analysis software and systems IV : meeting held at Baltimore, Maryland, 25-28 September 1994 , 1995 .

[40]  C. Beichman,et al.  The luminous starburst galaxy UGC 8387 , 1995 .

[41]  S. Baum,et al.  What are the gigahertz peaked-spectrum radio sources ? , 1991 .

[42]  T. Thuan,et al.  Compact starbursts in ultraluminous infrared galaxies , 1991 .

[43]  J. Roberts,et al.  Radio Astrophysics : Nonthermal Processes in Galactic and Extragalactic Sources , 1970 .