A strong ramp secret sharing scheme using matrix projection

This paper presents a strong (k,n) threshold-based ramp secret sharing scheme with k access levels. The secrets are the elements represented in a square matrix S. The secret matrix S can be shared among n different participants using a matrix projection technique where: i) any subset of k participants can collaborate together to reconstruct the secret, and ii) any subset of (k-1) or fewer participants cannot partially discover the secret matrix. The primary advantages are its large compression rate on the size of the shares and its strong protection of the secrets

[1]  Pascal Paillier,et al.  On Ideal Non-perfect Secret Sharing Schemes , 1997, Security Protocols Workshop.

[2]  Alfredo De Santis,et al.  Multiple ramp schemes , 1999, IEEE Trans. Inf. Theory.

[3]  K. Srinathan,et al.  Non-perfect Secret Sharing over General Access Structures , 2002, INDOCRYPT.

[4]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[5]  Amos Beimel,et al.  Secret Sharing with Public Reconstruction , 1998, IEEE Trans. Inf. Theory.

[6]  Keith M. Martin,et al.  Geometric secret sharing schemes and their duals , 1994, Des. Codes Cryptogr..

[7]  John Bloom,et al.  A modular approach to key safeguarding , 1983, IEEE Trans. Inf. Theory.

[8]  Hirosuke Yamamoto,et al.  Secret sharing system using (k, L, n) threshold scheme , 1986 .

[9]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[10]  Theresa Migler,et al.  Weight and rank of matrices over finite fields , 2004 .

[11]  Ehud D. Karnin,et al.  On secret sharing systems , 1983, IEEE Trans. Inf. Theory.

[12]  Catherine A. Meadows,et al.  Security of Ramp Schemes , 1985, CRYPTO.