Approximate McKean–Vlasov representations for a class of SPDEs

The solution of a class of linear stochastic partial differential equations is approximated using Clark's robust representation approach. The ensuing approximations are shown to coincide with the time marginals of solutions of a certain McKean–Vlasov type equation. We prove existence and uniqueness of the solution of the McKean–Vlasov equation.

[1]  R. Mortensen Stochastic Optimal Control with Noisy Observations , 1966 .

[2]  H. Kushner Dynamical equations for optimal nonlinear filtering , 1967 .

[3]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[4]  M. Zakai On the optimal filtering of diffusion processes , 1969 .

[5]  Tyrone E. Duncan,et al.  Likelihood Functions for Stochastic Signals in White Noise , 1970, Inf. Control..

[6]  H. Kunita,et al.  Stochastic differential equations for the non linear filtering problem , 1972 .

[7]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[8]  J. M. Clark The Design of Robust Approximations to the Stochastic Differential Equations of Nonlinear Filtering , 1978 .

[9]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[10]  L. C. G. Rogers,et al.  STOCHASTIC DIFFERENTIAL EQUATIONS AND DIFFUSION PROCESSES (North‐Holland Mathematical Library, 24) , 1982 .

[11]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[12]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[13]  A. Shiryayev,et al.  Statistics of Random Processes I: General Theory , 1984 .

[14]  B. Rozovskii Stochastic Evolution Systems , 1990 .

[15]  É. Pardoux,et al.  Filtrage Non Lineaire Et Equations Aux Derivees Partielles Stochastiques Associees , 1991 .

[16]  Brian Jefferies Feynman-Kac Formulae , 1996 .

[17]  Roger Pettersson,et al.  Penalization schemes for reflecting stochastic differential equations , 1997 .

[18]  D. Crisan,et al.  A particle approximation of the solution of the Kushner–Stratonovitch equation , 1999 .

[19]  Dan Crisan,et al.  Convergence of a Branching Particle Method to the Solution of the Zakai Equation , 1998, SIAM J. Appl. Math..

[20]  P. Moral,et al.  Interacting particle systems approximations of the Kushner-Stratonovitch equation , 1999, Advances in Applied Probability.

[21]  T. Kurtz,et al.  Particle representations for a class of nonlinear SPDEs , 1999 .

[22]  P. Moral,et al.  Branching and interacting particle systems. Approximations of Feynman-Kac formulae with applications to non-linear filtering , 2000 .

[23]  Laurent Miclo,et al.  A Moran particle system approximation of Feynman-Kac formulae , 2000 .

[24]  Laurent Saloff-Coste,et al.  Aspects of Sobolev-type inequalities , 2001 .

[25]  T. Kurtz,et al.  Numerical Solutions for a Class of SPDEs with Application to Filtering , 2001 .

[26]  L. Slominski Euler's approximations of solutions of SDEs with reflecting boundary , 2001 .

[27]  Dan Crisan,et al.  Particle Filters - A Theoretical Perspective , 2001, Sequential Monte Carlo Methods in Practice.

[28]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[29]  D. Crisan Exact rates of convergeance for a branching particle approximation to the solution of the Zakai equation , 2003 .

[30]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[31]  Dan Crisan,et al.  On a robust version of the integral representation formula of nonlinear filtering , 2005 .

[32]  Dan Crisan,et al.  Numerical solutions for a class of SPDEs over bounded domains , 2007 .