A Most General Edge Elimination Polynomial

We look for graph polynomials which satisfy recurrence relations on three kinds of edge elimination: edge deletion, edge contraction and edge extraction, i.e., deletion of edges together with their end points. Like in the case of deletion and contraction only (J.G. Oxley and D.J.A. Welsh 1979), it turns out that there is a most general polynomial satisfying such recurrence relations, which we call *** (G ,x ,y ,z ). We show that the new polynomial simultaneously generalizes the Tutte polynomial, the matching polynomial, and the recent generalization of the chromatic polynomial proposed by K.Dohmen, A.Ponitz and P.Tittman (2003), including also the independent set polynomial of I. Gutman and F. Harary, (1983) and the vertex-cover polynomial of F.M. Dong, M.D. Hendy, K.T. Teo and C.H.C. Little (2002). We give three definitions of the new polynomial: first, the most general recursive definition, second, an explicit one, using a set expansion formula, and finally, a partition function, using counting of weighted graph homomorphisms. We prove the equivalence of the three definitions. Finally, we discuss the complexity of computing *** (G ,x ,y ,z ).

[1]  Johann A. Makowsky,et al.  Algorithmic uses of the Feferman-Vaught Theorem , 2004, Ann. Pure Appl. Log..

[2]  Feng Ming Dong,et al.  The vertex-cover polynomial of a graph , 2002, Discret. Math..

[3]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[4]  K. Koh,et al.  Chromatic polynomials and chro-maticity of graphs , 2005 .

[5]  O. J. Heilmann,et al.  Theory of monomer-dimer systems , 1972 .

[6]  J. Makowsky,et al.  A most general edge elimination graph polynomial , 2007, 0712.3112.

[7]  P. Rowlinson ALGEBRAIC GRAPH THEORY (Graduate Texts in Mathematics 207) By CHRIS GODSIL and GORDON ROYLE: 439 pp., £30.50, ISBN 0-387-95220-9 (Springer, New York, 2001). , 2002 .

[8]  Peter Tittmann,et al.  A new two-variable generalization of the chromatic polynomial , 2003, Discret. Math. Theor. Comput. Sci..

[9]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[10]  Johann A. Makowsky,et al.  Computing Graph Polynomials on Graphs of Bounded Clique-Width , 2006, WG.

[11]  Petr A. Golovach,et al.  Clique-width: on the price of generality , 2009, SODA.

[12]  Marc Noy,et al.  Computing the Tutte Polynomial on Graphs of Bounded Clique-Width , 2006, SIAM J. Discret. Math..

[13]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[14]  Johann A. Makowsky,et al.  An extension of the bivariate chromatic polynomial , 2010, Eur. J. Comb..

[15]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[16]  Béla Bollobás,et al.  A Tutte Polynomial for Coloured Graphs , 1999, Combinatorics, Probability and Computing.

[17]  Christian Hoffmann,et al.  A Most General Edge Elimination Polynomial - Thickening of Edges , 2008, Fundam. Informaticae.

[18]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[19]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[20]  Marc Noy,et al.  Computing the Tutte Polynomial on Graphs of Bounded Clique-Width , 2005, WG.

[21]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[22]  O. J. Heilmann,et al.  Theory of monomer-dimer systems , 1972 .

[23]  Johann A. Makowsky,et al.  Counting truth assignments of formulas of bounded tree-width or clique-width , 2008, Discret. Appl. Math..

[24]  Lorenzo Traldi,et al.  On the colored Tutte polynomial of a graph of bounded treewidth , 2006, Discret. Appl. Math..

[25]  L. Lovasz,et al.  Reflection positivity, rank connectivity, and homomorphism of graphs , 2004, math/0404468.

[26]  Johann A. Makowsky,et al.  Colored Tutte polynomials and Kaufman brackets for graphs of bounded tree width , 2001, SODA '01.

[27]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[28]  David N. Yetter,et al.  On graph invariants given by linear recurrence relations , 1990, J. Comb. Theory, Ser. B.