Low Frequency Current Ripple Reduction Technique With Active Control in a Fuel Cell Power System With Inverter Load

A fuel cell power system that contains a single-phase dc-ac inverter tends to draw an ac ripple current at twice the output frequency. Such a ripple current may shorten fuel cell life span and worsen the fuel efficiency due to the hystersis effect. The most obvious impact is it tends to reduce the fuel cell output capacity because the fuel cell controller trips under instantaneous over-current condition. In this paper, the ripple current propagation path is analyzed, and its linearized ac model is derived. The equivalent circuit model and ripple current reduction with passive energy storage component are simulated and verified with experiments. An advanced active control technique is then proposed to incorporate a current control loop in the dc-dc converter for ripple reduction. The proposed active ripple reduction method has been verified with computer simulation and hardware experiment with a proton exchange membrane type fuel cell using a multiphase dc-dc converter along with a full-bridge dc-ac inverter. Test results with open loop, single voltage loop, and the proposed active current-loop control are provided for comparison.

[1]  J. Lai,et al.  Fuel cell and power conditioning system interactions , 2005, Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005..

[2]  P.N. Enjeti,et al.  Development of an equivalent circuit model of a fuel cell to evaluate the effects of inverter ripple current , 2004, Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04..

[3]  Antonello Monti,et al.  Fuel cell based domestic power supply-a student project , 2002, 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289).

[4]  R. Gemmen Analysis for the Effect of Inverter Ripple Current on Fuel Cell Operating Condition , 2001, Heat Transfer: Volume 4 — Combustion and Energy Systems.

[5]  T. Meynard,et al.  Interactions Between Fuel Cells and Power Converters: Influence of Current Harmonics on a Fuel Cell Stack , 2007, IEEE Transactions on Power Electronics.

[6]  Jih-Sheng Lai,et al.  A novel three-phase high-power soft-switched DC/DC converter for low-voltage fuel cell applications , 2005 .

[7]  Jih-Sheng Lai,et al.  Modeling and Control of a Novel Six-Leg Three-Phase High-Power Converter for Low Voltage Fuel Cell Applications , 2006, IEEE Transactions on Power Electronics.