Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions, II
暂无分享,去创建一个
[1] S. Alinhac. Stability of Geometric Blowup , 1999 .
[2] S. Alinhac. Blowup of small data solutions for a quasilinear wave equation in two space dimensions. , 1999, math/9901146.
[3] L. Hörmander,et al. Lectures on Nonlinear Hyperbolic Differential Equations , 1997 .
[4] S. Alinhac. Explosion Geometrique pour des Systemes Quasi-Lineaires , 1995 .
[5] S. Alinhac. Approximation near blow-up time of solutions of quasi-linear wave equations in two dimensions , 1995 .
[6] Serge Alinhac,et al. Blowup for Nonlinear Hyperbolic Equations , 1995 .
[7] S. Alinhac. Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux, II , 1994 .
[8] P. Gérard,et al. Opérateurs pseudo-différentiels et théorème de Nash-Moser , 1991 .
[9] Sergiu Klainerman,et al. Uniform decay estimates and the lorentz invariance of the classical wave equation , 1985 .
[10] S. Alinhac. Explosion des solutions d'une équation d'ondes quasi-linéaire en deux dimensions d'espace , 1996 .
[11] Fritz John,et al. Nonlinear wave equations, formation of singularities , 1990 .
[12] S. Alinhac,et al. Existence d'ondes de rarefaction pour des systems quasi‐lineaires hyperboliques multidimensionnels , 1989 .
[13] L. Hörmander,et al. The lifespan of classical solutions of non-linear hyperbolic equations , 1987 .
[14] A. Majda. Compressible fluid flow and systems of conservation laws in several space variables , 1984 .