Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions, II

[1]  S. Alinhac Stability of Geometric Blowup , 1999 .

[2]  S. Alinhac Blowup of small data solutions for a quasilinear wave equation in two space dimensions. , 1999, math/9901146.

[3]  L. Hörmander,et al.  Lectures on Nonlinear Hyperbolic Differential Equations , 1997 .

[4]  S. Alinhac Explosion Geometrique pour des Systemes Quasi-Lineaires , 1995 .

[5]  S. Alinhac Approximation near blow-up time of solutions of quasi-linear wave equations in two dimensions , 1995 .

[6]  Serge Alinhac,et al.  Blowup for Nonlinear Hyperbolic Equations , 1995 .

[7]  S. Alinhac Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux, II , 1994 .

[8]  P. Gérard,et al.  Opérateurs pseudo-différentiels et théorème de Nash-Moser , 1991 .

[9]  Sergiu Klainerman,et al.  Uniform decay estimates and the lorentz invariance of the classical wave equation , 1985 .

[10]  S. Alinhac Explosion des solutions d'une équation d'ondes quasi-linéaire en deux dimensions d'espace , 1996 .

[11]  Fritz John,et al.  Nonlinear wave equations, formation of singularities , 1990 .

[12]  S. Alinhac,et al.  Existence d'ondes de rarefaction pour des systems quasi‐lineaires hyperboliques multidimensionnels , 1989 .

[13]  L. Hörmander,et al.  The lifespan of classical solutions of non-linear hyperbolic equations , 1987 .

[14]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .