High-fidelity Aerostructural Optimization Studies of the Aerion AS2 Supersonic Business Jet

The Aerion AS2 is poised to make supersonic transportation viable and drastically reduce transoceanic travel time. The design of a supersonic transport aircraft is challenging because experience with this type of aircraft is scarce. Achieving the required range at supersonic speeds requires a refined design with the best combination of aerodynamic and structural performance. Adequate transonic cruise performance is also required due to mission segments overland. To address these issues, we perform CFD-based aerostructural design of the Aerion AS2 supersonic business jet configuration. The aerostructural optimization simultaneously varies structural sizing and wing shape variables to maximize a combination of supersonic and transonic cruise ranges. We examine the design trades between these two ranges by generating sets of Pareto-optimal designs. Optimizations that include wing planform design variables achieve the best design trades, but maximizing supersonic range is particularly challenging. Overall, these initial results show that CFD-based multidisciplinary design optimization is fast enough that we can perform this type of extensive design exploration before the detailed design stage.

[1]  Joaquim R. R. A. Martins,et al.  ADflow: An Open-Source Computational Fluid Dynamics Solver for Aerodynamic and Multidisciplinary Optimization , 2020, J. Aerosp. Inf. Syst..

[2]  Timothy R. Brooks,et al.  Aerostructural Tradeoffs for Tow-Steered Composite Wings , 2020 .

[3]  Joaquim R. R. A. Martins,et al.  Effective adjoint approaches for computational fluid dynamics , 2019, Progress in Aerospace Sciences.

[4]  Joaquim R. R. A. Martins,et al.  Flutter and post-flutter constraints in aircraft design optimization , 2019, Progress in Aerospace Sciences.

[5]  Timothy R. Brooks,et al.  High-fidelity aerostructural optimization of tow-steered composite wings , 2019, Journal of Fluids and Structures.

[6]  Dev G. Rajnarayan,et al.  A Script-Based CAD System for Aerodynamic Design , 2019, AIAA Aviation 2019 Forum.

[7]  Nischint Rajmohan,et al.  Methodology for a Robust Interactive Boundary Layer Solver , 2019, AIAA Aviation 2019 Forum.

[8]  Joaquim R. R. A. Martins,et al.  Multipoint Aerodynamic Shape Optimization for Subsonic and Supersonic Regimes , 2019, Journal of Aircraft.

[9]  Joaquim R. R. A. Martins,et al.  Flexible Formulation of Spatial Integration Constraints in Aerodynamic Shape Optimization , 2019, AIAA Journal.

[10]  Joaquim R. R. A. Martins,et al.  Impact of Morphing Trailing Edges on Mission Performance for the Common Research Model , 2019, Journal of Aircraft.

[11]  Joaquim R. R. A. Martins,et al.  Coupled aeropropulsive design optimisation of a boundary-layer ingestion propulsor , 2018, The Aeronautical Journal.

[12]  Joaquim R. R. A. Martins,et al.  Design of a transonic wing with an adaptive morphing trailing edge via aerostructural optimization , 2018, Aerospace Science and Technology.

[13]  Joaquim R. R. A. Martins,et al.  Component-Based Geometry Manipulation for Aerodynamic Shape Optimization with Overset Meshes , 2017, AIAA Journal.

[14]  Joaquim R. R. A. Martins,et al.  Aerostructural optimization of the D8 wing with varying cruise mach numbers , 2017 .

[15]  Klaus Lütjens,et al.  Exploring the Prospect of Small Supersonic Airliners – A Business Case Study Based on the Aerion AS2 Jet (Abstract) , 2017 .

[16]  Travis J. Carrigan,et al.  Reducing the Computational Cost of Viscous Mesh Adaptation , 2017 .

[17]  Graeme J. Kennedy,et al.  An evaluation of constraint aggregation strategies for wing box mass minimization , 2017 .

[18]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization of Common Research Model Wing–Body–Tail Configuration , 2016 .

[19]  J. Martins,et al.  Multipoint Aerodynamic Shape Optimization Investigations of the Common Research Model Wing , 2015 .

[20]  Joaquim R. R. A. Martins,et al.  Multimission Aircraft Fuel-Burn Minimization via Multipoint Aerostructural Optimization , 2015 .

[21]  Joaquim R. R. A. Martins,et al.  A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures , 2014 .

[22]  Peter Sturdza,et al.  Design and Validation of a Supersonic Natural Laminar Flow Test Article , 2014 .

[23]  Graeme J. Kennedy,et al.  Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations , 2014 .

[24]  Joaquim R. R. A. Martins,et al.  Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration , 2014 .

[25]  G. Andres Garzon,et al.  Supersonic Testing of Natural Laminar Flow on Sharp Leading Edge Airfoils. Recent Experiments by Aerion Corporation. , 2012 .

[26]  Joaquim R. R. A. Martins,et al.  pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization , 2011, Structural and Multidisciplinary Optimization.

[27]  Jason Matisheck,et al.  Sonic Boom Cutoff Across the United States , 2008 .

[28]  Peter Sturdza,et al.  Extensive Supersonic Natural Laminar Flow on the Aerion Business Jet , 2007 .

[29]  David L. Rodriguez Propulsion/Airframe Integration and Optimization on a Supersonic Business Jet , 2007 .

[30]  J. Alonso,et al.  A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design , 2005 .

[31]  Joaquim R. R. A. Martins,et al.  High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet , 2002 .

[32]  Ilan Kroo,et al.  Boundary layer calculations for preliminary design of wings in supersonic flow , 1999 .

[33]  S. Brown,et al.  Displacement extrapolations for CFD+CSM aeroelastic analysis , 1997 .