High-speed digital visualization and high-frequency automated shock tracking in supersonic flows

A low-cost, robust, versatile digital shadowgraph visualization system is presented that provides a fast nonintrusive diagnostic for unsteady high-speed flows. The technique is particularly designed for real-time automated tracking of shock positions, enabling high-speed active shock control. The visualization system is based on a high-intensity white LED light source combined with a CMOS-imaging sensor, providing the system with three modes of operation: (1) high-resolution overall instantaneous visualization; (2) high-resolution visualization showing spatial- temporal variations in the flow field, allowing direct identification of areas where changes occur; (3) adjustable windowed visualization at reduced resolution at high frame rate (currently up to 980 Hz) . Experimental results are presented together with numerical simulations based on the high-accuracy NTS Navier-Stokes solver and Roe's flux difference splitting method. The flow studied is an adjustable underexpanded jet flow coming from a nozzle that is placed in a counterflowing Mach-2 flow. The interaction of the two flows results in a complex shock and expansion pattern, providing a challenging configuration for the numerical flow solver. By modulating the jet, high-frequency changes are induced in the interaction pattern, allowing simulation of shock movement in a supersonic inlet. Good correspondence between measured and numerical shock position and angle isfound. (C) 2008 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.2992621]