A Variable Neighborhood Search Approach for Solving the Multidimensional Multi-Way Number Partitioning Problem

This paper presents an implementation of the Variable Neighborhood Search (VNS) metaheuristic for solving the optimization version of the Multidimensional Multi-Way Number Partitioning Problem (MDMWNPP). This problem consists in distributing the vectors of a given sequence into k disjoint subsets such that the sums of each subset form a set of vectors with minimum diameter. The proposed VNS for solving MDMWNPP has a good performance over instances with three and four subsets. A comparative study of results found from this proposed VNS and an implementation of Memetic Algorithm (MA) is carried out, running in the same proportional time interval. Although the average results are different, the statistical tests show that results of the proposed VNS are not significantly better than MA in a set of instances analyzed.

[1]  Jr. Earl Glen Whitehead,et al.  Combinatorial Algorithms for Computers and Calculators; 2nd Edition (Albert Nijenhuis and Herbert S. Wilf) , 1980 .

[2]  Sérgio Ricardo de Souza,et al.  Variable Neighborhood Descent applied to Multi-way Number Partitioning Problem , 2018, Electron. Notes Discret. Math..

[3]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[4]  Toby Walsh,et al.  Analysis of Heuristics for Number Partitioning , 1998, Comput. Intell..

[5]  Stephan Mertens A complete anytime algorithm for balanced number partitioning , 1999, ArXiv.

[6]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[7]  Richard E. Korf,et al.  A Complete Anytime Algorithm for Number Partitioning , 1998, Artif. Intell..

[8]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[9]  Fred W. Glover,et al.  GRASP with exterior path-relinking and restricted local search for the multidimensional two-way number partitioning problem , 2017, Comput. Oper. Res..

[10]  Ethan L. Schreiber Optimal Multi-Way Number Partitioning , 2018, J. ACM.

[11]  Oliviu Matei,et al.  A memetic algorithm approach for solving the multidimensional multi-way number partitioning problem , 2013 .

[12]  Ellis Horowitz,et al.  Computing Partitions with Applications to the Knapsack Problem , 1974, JACM.

[13]  Richard E. Korf,et al.  Optimal Sequential Multi-Way Number Partitioning , 2014, ISAIM.

[14]  Jelena Kojic Integer linear programming model for multidimensional two-way number partitioning problem , 2010, Comput. Math. Appl..

[15]  Richard E. Korf,et al.  Multi-Way Number Partitioning , 2009, IJCAI.

[16]  Richard E. Korf,et al.  Cached Iterative Weakening for Optimal Multi-Way Number Partitioning , 2014, AAAI.

[17]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[18]  Jozef Kratica,et al.  Two metaheuristic approaches for solving multidimensional two-way number partitioning problem , 2014, Comput. Oper. Res..

[19]  Michael D. Moffitt Search Strategies for Optimal Multi-Way Number Partitioning , 2013, IJCAI.

[20]  Adi Shamir,et al.  A T=O(2n/2), S=O(2n/4) Algorithm for Certain NP-Complete Problems , 1981, SIAM J. Comput..

[21]  João Pedro Pedroso,et al.  Heuristics and exact methods for number partitioning , 2010, Eur. J. Oper. Res..

[22]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .