Effect of NiAl content on phases and microstructures of TiC–TiB2–NiAl composites fabricated by reaction synthesis

[1]  O. Yucel,et al.  Self-propagating High Temperature Synthesis of TiB2 , 2014 .

[2]  Wu Liang Pore formation mechanism of porous NiAl intermetallics , 2013 .

[3]  Chuanzhen Huang,et al.  Mechanical properties and microstructure of TiB2–TiC composite ceramic cutting tool material , 2012 .

[4]  F. Qiu,et al.  Compression properties and abrasive wear behavior of high volume fraction TiCx–TiB2/Cu composites fabricated by combustion synthesis and hot press consolidation , 2012 .

[5]  L. Geng,et al.  Grain size effect on cyclic oxidation of (TiB2+TiC)/Ni3Al composites , 2012 .

[6]  Chuanzhen Huang,et al.  Effects of sintering processes on mechanical properties and microstructure of TiB2–TiC + 8 wt% nano-Ni composite ceramic cutting tool material , 2012 .

[7]  Cao Guang-hui,et al.  Preparation processes of Ni-Al-based coatings and their oxidation resistance , 2012 .

[8]  Tao Zhang,et al.  Combustion synthesis of TiC–NiAl composite by induction heating , 2010 .

[9]  S. M. Shariff,et al.  Tribological behavior of TiB2–TiC–Al2O3 composite coating synthesized by combined SHS and laser technology , 2010 .

[10]  Y. Liu,et al.  Effect of sintering process on the microstructures and properties of in situ TiB2–TiC reinforced steel matrix composites produced by spark plasma sintering , 2010 .

[11]  N. Xu,et al.  Formation of porous Ni–Al intermetallics through pressureless reaction synthesis , 2009 .

[12]  F. Deorsola,et al.  Synthesis of TiC–TiB2–Ni cermets by thermal explosion under pressure , 2009 .

[13]  F. Maglia,et al.  Self-propagating high-temperature synthesis of ZrB2 or TiB2 reinforced Ni–Al composite powder , 2009 .

[14]  Q. Jiang,et al.  Dependence of the SHS reaction behavior and product on B4C particle size in Al–Ti–B4C and Al–TiO2–B4C systems , 2009 .

[15]  Zhenting Wang,et al.  Microstructure and formation mechanism of in-situ TiC-TiB2/Fe composite coating , 2008 .

[16]  F. Akhtar,et al.  Reactive sintering and properties of TiB2 and TiC porous cermets , 2008 .

[17]  Zhou Lan-zhang Wear Bahavior of in Situ Composite NiAl-Al_2O_3-TiC at High Temperature , 2008 .

[18]  A. Chrysanthou,et al.  TiC-TiB2 composites : A review of phase relationships, processing and properties , 2008 .

[19]  A. Terry,et al.  Al–Ni intermetallics obtained by SHS; A time-resolved X-ray diffraction study , 2007 .

[20]  Q. Jiang,et al.  Reaction mechanism in self-propagating high temperature synthesis of TiC-TiB2/Al composites from an Al-Ti-B4C system , 2007 .

[21]  G. Jianting Research progress of intermetallic NiAl alloys , 2007 .

[22]  G. Dercz,et al.  Dispersion analysis of NiAl-TiC-Al2O3 composite powder ground in a high-energy attritorial mill , 2006 .

[23]  T. Goto,et al.  Preparation of directionally solidified TiB2–TiC eutectic composites by a floating zone method , 2006 .

[24]  Jiecai Han,et al.  Combustion synthesis and densification of titanium diboride–copper matrix composite , 2003 .

[25]  G. Vaughan,et al.  TiC-NiAl composites obtained by SHS: a time-resolved XRD study , 2002 .

[26]  K. Hu,et al.  TiB2/TiC nanocomposite powder fabricated via high energy ball milling , 2001 .